52 research outputs found

    Structure and function of the vacuolar Ccc1/VIT1 family of iron transporters and its regulation in fungi

    Get PDF
    Iron is an essential micronutrient for most living beings since it participates as a redox active cofactor in many biological processes including cellular respiration, lipid biosynthesis, DNA replication and repair, and ribosome biogenesis and recycling. However, when present in excess, iron can participate in Fenton reactions and generate reactive oxygen species that damage cells at the level of proteins, lipids and nucleic acids. Organisms have developed different molecular strategies to protect themselves against the harmful effects of high concentrations of iron. In the case of fungi and plants, detoxification mainly occurs by importing cytosolic iron into the vacuole through the Ccc1/VIT1 iron transporter. New sequenced genomes and bioinformatic tools are facilitating the functional characterization, evolution and ecological relevance of metabolic pathways and homeostatic networks across the Tree of Life. Sequence analysis shows that Ccc1/VIT1 homologs are widely distributed among organisms with the exception of animals. The recent elucidation of the crystal structure of a Ccc1/VIT1 plant ortholog has enabled the identification of both conserved and species-specific motifs required for its metal transport mechanism. Moreover, recent studies in the yeast Saccharomyces cerevisiae have also revealed that multiple transcription factors including Yap5 and Msn2/Msn4 contribute to the expression of CCC1 in high-iron conditions. Interestingly, Malaysian S. cerevisiae strains express a partially functional Ccc1 protein that renders them sensitive to iron. Different regulatory mechanisms have been described for non-Saccharomycetaceae Ccc1 homologs. The characterization of Ccc1/VIT1 proteins is of high interest in the development of biofortified crops and the protection against microbial-derived diseases

    Convergent evolution of the arginine deiminase pathway:the ArcD and ArcE arginine/ornithine exchangers

    Get PDF
    The arginine deiminase (ADI) pathway converts L-arginine into L-ornithine and yields 1 mol of ATP per mol of L-arginine consumed. The L-arginine/L-ornithine exchanger in the pathway takes up L-arginine and excretes L-ornithine from the cytoplasm. Analysis of the genomes of 1281 bacterial species revealed the presence of 124 arc gene clusters encoding the pathway. About half of the clusters contained the gene encoding the well-studied L-arginine/L-ornithine exchanger ArcD, while the other half contained a gene, termed here arcE, encoding a membrane protein that is not a homolog of ArcD. The arcE gene product of Streptococcus pneumoniae was shown to take up L-arginine and L-ornithine with affinities of 0.6 and 1 μmol/L, respectively, and to catalyze metabolic energy-independent, electroneutral exchange. ArcE of S. pneumoniae could replace ArcD in the ADI pathway of Lactococcus lactis and provided the cells with a growth advantage. In contrast to ArcD, ArcE catalyzed translocation of the pathway intermediate L-citrulline with high efficiency. A short version of the ADI pathway is proposed for L-citrulline catabolism and the presence of the evolutionary unrelated arcD and arcE genes in different organisms is discussed in the context of the evolution of the ADI pathway

    Family resemblances: A common fold for some dimeric ion-coupled secondary transporters

    Get PDF
    Membrane transporter proteins catalyze the passage of a broad range of solutes across cell membranes, allowing the uptake and efflux of crucial compounds. Because of the difficulty of expressing, purifying, and crystallizing integral membrane proteins, relatively few transporter structures have been elucidated to date. Although every membrane transporter has unique characteristics, structural and mechanistic similarities between evolutionarily diverse transporters have been identified. Here, we compare two recently reported structures of membrane proteins that act as antimicrobial efflux pumps, namely MtrF from Neisseria gonorrhoeae and YdaH from Alcanivorax borkumensis, both with each other and with the previously published structure of a sodium-dependent dicarboxylate transporter from Vibrio cholerae, VcINDY. MtrF and YdaH belong to the p-aminobenzoyl-glutamate transporter (AbgT) family and have been reported as having architectures distinct from those of all other families of transporters. However, our comparative analysis reveals a similar structural arrangement in all three proteins, with highly conserved secondary structure elements. Despite their differences in biological function, the overall "design principle" of MtrF and YdaH appears to be almost identical to that of VcINDY, with a dimeric quaternary structure, helical hairpins, and clear boundaries between the transport and scaffold domains. This observation demonstrates once more that the same secondary transporter architecture can be exploited for multiple distinct transport modes, including cotransport and antiport. Based on our comparisons, we detected conserved motifs in the substrate-binding region and predict specific residues likely to be involved in cation or substrate binding. These findings should prove useful for the future characterization of the transport mechanisms of these families of secondary active transporters

    Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family

    Get PDF
    Secondary active transporters of the SLC11/NRAMP family catalyse the uptake of iron and manganese into cells. These proteins are highly conserved across all kingdoms of life and thus likely share a common transport mechanism. Here we describe the structural and functional properties of the prokaryotic SLC11 transporter EcoDMT. Its crystal structure reveals a previously unknown outward-facing state of the protein family. In proteoliposomes EcoDMT mediates proton-coupled uptake of manganese at low micromolar concentrations. Mutants of residues in the transition-metal ion-binding site severely affect transport, whereas a mutation of a conserved histidine located near this site results in metal ion transport that appears uncoupled to proton transport. Combined with previous results, our study defines the conformational changes underlying transition-metal ion transport in the SLC11 family and it provides molecular insight to its coupling to protons

    Mechanistic basis of the inhibition of SLC11/NRAMP-mediated metal ion transport by bis-isothiourea substituted compounds.

    Get PDF
    In humans, the divalent metal ion transporter-1 (DMT1) mediates the transport of ferrous iron across the apical membrane of enterocytes. Hence, its inhibition could be beneficial for the treatment of iron overload disorders. Here we characterize the interaction of aromatic bis-isothiourea-substituted compounds with human DMT1 and its prokaryotic homologue EcoDMT. Both transporters are inhibited by a common competitive mechanism with potencies in the low micromolar range. The crystal structure of EcoDMT in complex with a brominated derivative defines the binding of the inhibitor to an extracellular pocket of the transporter in direct contact with residues of the metal ion coordination site, thereby interfering with substrate loading and locking the transporter in its outward-facing state. Mutagenesis and structure-activity relationships further support the observed interaction mode and reveal species-dependent differences between pro- and eukaryotic transporters. Together, our data provide the first detailed mechanistic insight into the pharmacology of SLC11/NRAMP transporters
    corecore