53 research outputs found

    A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort

    Get PDF
    <p><b>Objectives</b> The aim of this study was to confirm the influence of TNFSF4 polymorphisms on systemic sclerosis (SSc) susceptibility and phenotypic features.</p> <p><b>Methods</b> A total of 8 European populations of Caucasian ancestry were included, comprising 3014 patients with SSc and 3125 healthy controls. Four genetic variants of TNFSF4 gene promoter (rs1234314, rs844644, rs844648 and rs12039904) were selected as genetic markers.</p> <p><b>Results</b> A pooled analysis revealed the association of rs1234314 and rs12039904 polymorphisms with SSc (OR 1.15, 95% CI 1.02 to 1.31; OR 1.18, 95% CI 1.08 to 1.29, respectively). Significant association of the four tested variants with patients with limited cutaneous SSc (lcSSc) was revealed (rs1234314 OR 1.22, 95% CI 1.07 to 1.38; rs844644 OR 0.91, 95% CI 0.83 to 0.99; rs844648 OR 1.10, 95% CI 1.01 to 1.20 and rs12039904 OR 1.20, 95% CI 1.09 to 1.33). Association of rs1234314, rs844648 and rs12039904 minor alleles with patients positive for anti-centromere antibodies (ACA) remained significant (OR 1.23, 95% CI 1.10 to 1.37; OR 1.12, 95% CI 1.01 to 1.25; OR 1.22, 95% CI 1.07 to 1.38, respectively). Haplotype analysis confirmed a protective haplotype associated with SSc, lcSSc and ACA positive subgroups (OR 0.88, 95% CI 0.82 to 0.96; OR 0.88, 95% CI 0.80 to 0.96; OR 0.86, 95% CI 0.77 to 0.97, respectively) and revealed a new risk haplotype associated with the same groups of patients (OR 1.14, 95% CI 1.03 to 1.26; OR 1.20, 95% CI 1.08 to 1.35; OR 1.23, 95% CI 1.07 to 1.42, respectively).</p> <p><b>Conclusions</b> The data confirm the influence of TNFSF4 polymorphisms in SSc genetic susceptibility, especially in subsets of patients positive for lcSSc and ACA.</p&gt

    The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34×10<sup>−8</sup>, OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.60×10<sup>−7</sup>, OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53×10<sup>−20</sup>, OR = 1.63, CI 95% = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04×10<sup>−22</sup>, OR = 1.75, CI 95% = 1.56–1.97) better explained the observed association (likelihood P-value = 1.48×10<sup>−4</sup>), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific

    KCNA5 gene is not confirmed as a systemic sclerosis-related pulmonary arterial hypertension genetic susceptibility factor

    Get PDF
    <p>Introduction: Potassium voltage-gated channel shaker-related subfamily member 5 (KCNA5) is implicated in vascular tone regulation, and its inhibition during hypoxia produces pulmonary vasoconstriction. Recently, a protective association of the KCNA5 locus with systemic sclerosis (SSc) patients with pulmonary arterial hypertension (PAH) was reported. Hence, the aim of this study was to replicate these findings in an independent multicenter Caucasian SSc cohort.</p> <p>Methods: The 2,343 SSc cases (179 PAH positive, confirmed by right-heart catheterization) and 2,690 matched healthy controls from five European countries were included in this study. Rs10744676 single-nucleotide polymorphism (SNP) was genotyped by using a TaqMan SNP genotyping assay.</p> <p>Results: Individual population analyses of the selected KCNA5 genetic variant did not show significant association with SSc or any of the defined subsets (for example, limited cutaneous SSc, diffuse cutaneous SSc, anti-centromere autoantibody positive and anti-topoisomerase autoantibody positive). Furthermore, pooled analyses revealed no significant evidence of association with the disease or any of the subsets, not even the PAH-positive group. The comparison of PAH-positive patients with PAH-negative patients showed no significant differences among patients.</p> <p>Conclusions: Our data do not support an important role of KCNA5 as an SSc-susceptibility factor or as a PAH-development genetic marker for SSc patients.</p&gt

    A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility

    Get PDF
    Introduction: A recent genome-wide association study (GWAS) comprising a French cohort of systemic sclerosis (SSc) reported several non-HLA single-nucleotide polymorphisms (SNPs) showing a nominal association in the discovery phase. We aimed to identify previously overlooked susceptibility variants by using a follow-up strategy.<p></p> Methods: Sixty-six non-HLA SNPs showing a P value <10-4 in the discovery phase of the French SSc GWAS were analyzed in the first step of this study, performing a meta-analysis that combined data from the two published SSc GWASs. A total of 2,921 SSc patients and 6,963 healthy controls were included in this first phase. Two SNPs, PPARG rs310746 and CHRNA9 rs6832151, were selected for genotyping in the replication cohort (1,068 SSc patients and 6,762 healthy controls) based on the results of the first step. Genotyping was performed by using TaqMan SNP genotyping assays. Results: We observed nominal associations for both PPARG rs310746 (PMH = 1.90 × 10-6, OR, 1.28) and CHRNA9 rs6832151 (PMH = 4.30 × 10-6, OR, 1.17) genetic variants with SSc in the first step of our study. In the replication phase, we observed a trend of association for PPARG rs310746 (P value = 0.066; OR, 1.17). The combined overall Mantel-Haenszel meta-analysis of all the cohorts included in the present study revealed that PPARG rs310746 remained associated with SSc with a nominal non-genome-wide significant P value (PMH = 5.00 × 10-7; OR, 1.25). No evidence of association was observed for CHRNA9 rs6832151 either in the replication phase or in the overall pooled analysis.<p></p> Conclusion: Our results suggest a role of PPARG gene in the development of SSc

    GWAS for Systemic Sclerosis Identifies Multiple Risk Loci and Highlights Fibrotic and Vasculopathy Pathways

    Get PDF
    Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.Funding: This work was supported by Spanish Ministry of Economy and Competitiveness (grant ref. SAF2015-66761-P), Consejeria de Innovacion, Ciencia y Tecnologia, Junta de Andalucía (P12-BIO-1395), Ministerio de Educación, Cultura y Deporte through the program FPU, Juan de la Cierva fellowship (FJCI-2015-24028), Red de Investigación en Inflamación y Enfermadades Reumaticas (RIER) from Instituto de Salud Carlos III (RD16/0012/0013), and Scleroderma Research Foundation and NIH P50-HG007735 (to H.Y.C.). H.Y.C. is an Investigator of the Howard Hughes Medical Institute. PopGen 2.0 is supported by a grant from the German Ministry for Education and Research (01EY1103). M.D.M and S.A. are supported by grant DoD W81XWH-18-1-0423 and DoD W81XWH-16-1-0296, respectively

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies

    Cross-disease Meta-analysis of Genome-wide Association Studies for Systemic Sclerosis and Rheumatoid Arthritis Reveals IRF4 as a New Common Susceptibility Locus

    Get PDF
    Objectives: Systemic sclerosis (SSc) and rheumatoid arthritis (RA) are autoimmune diseases that share clinical and immunological characteristics. To date, several shared SSc- RA loci have been identified independently. In this study, we aimed to systematically search for new common SSc-RA loci through an inter-disease meta-GWAS strategy. Methods: We performed a meta-analysis combining GWAS datasets of SSc and RA using a strategy that allowed identification of loci with both same-direction and opposingdirection allelic effects. The top single-nucleotide polymorphisms (SNPs) were followed-up in independent SSc and RA case-control cohorts. This allowed us to increase the sample size to a total of 8,830 SSc patients, 16,870 RA patients and 43,393 controls. Results: The cross-disease meta-analysis of the GWAS datasets identified several loci with nominal association signals (P-value < 5 x 10-6), which also showed evidence of association in the disease-specific GWAS scan. These loci included several genomic regions not previously reported as shared loci, besides risk factors associated with both diseases in previous studies. The follow-up of the putatively new SSc-RA loci identified IRF4 as a shared risk factor for these two diseases (Pcombined = 3.29 x 10-12). In addition, the analysis of the biological relevance of the known SSc-RA shared loci pointed to the type I interferon and the interleukin 12 signaling pathways as the main common etiopathogenic factors. Conclusions: Our study has identified a novel shared locus, IRF4, for SSc and RA and highlighted the usefulness of cross-disease GWAS meta-analysis in the identification of common risk loci

    Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER), "A way of making Europe".Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals

    Association of a non-synonymous functional variant of the ITGAM gene with systemic sclerosis.

    Get PDF
    Systemic sclerosis (SSc) is a chronic fibrotic autoimmune disease of complex aetiology which shares genetic similarities with systemic lupus erythematosus (SLE).1 2 One of the novel risk loci that have been recently associated with SLE is the integrin α M (ITGAM) gene, which encodes the α subunit of the αMβ2-integrin.3 4 The most likely causal polymorphism that best explains this association is a non-synonymous single-nucleotide polymorphism (SNP) at the exon 3, rs1143679, which changes the 77th amino acid residue arginine to histidine (R77H). This functional SNP represents one of the highest associated signals with SLE and is predicted to alter the structure and function of the integrin.4 5 To determine whether ITGAM rs1143679 is also associated with SSc susceptibility and clinical manifestations, we genotyped a total of 3735 SSc patients and 3930 matched healthy individuals from seven independent European cohorts of Caucasian origin (Spain, Germany, The Netherlands, Italy, Norway, Sweden and UK) using a predesigned TaqMan® assay (ID: C___2847895_1_) in an ABI 7900HT (both from Applied Biosystems, Foster City, California, USA). Case …Peer Reviewe

    The Systemic Lupus Erythematosus IRF5 Risk Haplotype Is Associated with Systemic Sclerosis

    Get PDF
    Abstract Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34610 28 , OR = 1.22, CI 95% = 1.14-1.30; rs2004640: P = 4.60610 27 , OR = 0.84, CI 95% = 0.78-0.90; rs10488631: P = 7.53610 220 , OR = 1.63, CI 95% = 1.47-1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04610 222 , OR = 1.75, CI 95% = 1.56-1.97) better explained the observed association (likelihood P-value = 1.48610 24 ), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not subphenotype-specific
    corecore