398 research outputs found

    Photochemical internalisation of a macromolecular protein toxin using a cell penetrating peptide-photosensitiser conjugate.

    Get PDF
    Photochemical internalisation (PCI) is a site-specific technique for improving cellular delivery of macromolecular drugs. In this study, a cell penetrating peptide, containing the core HIV-1 Tat 48-57 sequence, conjugated with a porphyrin photosensitiser has been shown to be effective for PCI. Herein we report an investigation of the photophysical and photobiological properties of a water soluble bioconjugate of the cationic Tat peptide with a hydrophobic tetraphenylporphyrin derivative. The cellular uptake and localisation of the amphiphilic bioconjugate was examined in the HN5 human head and neck squamous cell carcinoma cell line. Efficient cellular uptake and localisation in endo/lysosomal vesicles was found using fluorescence detection, and light-induced, rupture of the vesicles resulting in a more diffuse intracellular fluorescence distribution was observed. Conjugation of the Tat sequence with a hydrophobic porphyrin thus enables cellular delivery of an amphiphilic photosensitiser which can then localise in endo/lysosomal membranes, as required for effective PCI treatment. PCI efficacy was tested in combination with a protein toxin, saporin, and a significant reduction in cell viability was measured versus saporin or photosensitiser treatment alone. This study demonstrates that the cell penetrating peptide-photosensitiser bioconjugation strategy is a promising and versatile approach for enhancing the therapeutic potential of bioactive agents through photochemical internalisation

    Endolysosomal targeting of a clinical chlorin photosensitiser for light-triggered delivery of nano-sized medicines

    Get PDF
    A major problem with many promising nano-sized biotherapeutics including macromolecules is that owing to their size they are subject to cellular uptake via endocytosis, and become entrapped and then degraded within endolysosomes, which can significantly impair their therapeutic efficacy. Photochemical internalisation (PCI) is a technique for inducing cytosolic release of the entrapped agents that harnesses sub-lethal photodynamic therapy (PDT) using a photosensitiser that localises in endolysosomal membranes. Using light to trigger reactive oxygen species-mediated rupture of the photosensitised endolysosomal membranes, the spatio-temporal selectivity of PCI then enables cytosolic release of the agents at the selected time after administration so that they can reach their intracellular targets. However, conventional photosensitisers used clinically for PDT are ineffective for photochemical internalisation owing to their sub-optimal intracellular localisation. In this work we demonstrate that such a photosensitiser, chlorin e6, can be repurposed for PCI by conjugating the chlorin to a cell penetrating peptide, using bioorthogonal ligation chemistry. The peptide conjugation enables targeting of endosomal membranes so that light-triggered cytosolic release of an entrapped nano-sized cytotoxin can be achieved with consequent improvement in cytotoxicity. The photoproperties of the chlorin moiety are also conserved, with comparable singlet oxygen quantum yields found to the free chlorin

    Flexible synthesis of cationic peptide-porphyrin derivatives for light-triggered drug delivery and photodynamic therapy

    Get PDF
    Efficient syntheses of cell-penetrating peptide-porphyrin conjugates are described using a variety of bioconjugation chemistries. This provides a flexible means to convert essentially hydrophobic tetrapyrolle photosensitisers into amphiphilic derivatives which are well-suited for use in light-triggered drug delivery by photochemical internalisation (PCI) and targeted photodynamic therapy (PDT)

    Codelivery of a cytotoxin and photosensitiser via a liposomal nanocarrier: a novel strategy for light-triggered cytosolic release

    Get PDF
    Endosomal entrapment is a key issue for the intracellular delivery of many nano-sized biotherapeutics to their cytosolic or nuclear targets. Photochemical internalisation (PCI) is a novel light-based solution that can be used to trigger the endosomal escape of a range of bioactive agents into the cytosol leading to improved efficacy in pre-clinical and clinical studies. PCI typically depends upon the endolysosomal colocalisation of the bioactive agent with a suitable photosensitiser that is administered separately. In this study we demonstrate that both these components may be combined for codelivery via a novel multifunctional liposomal nanocarrier, with a corresponding increase in the biological efficacy of the encapsulated agent. As proof of concept, we show here that the cytotoxicity of the 30 kDa protein toxin, saporin, in MC28 fibrosarcoma cells is significantly enhanced when delivered via a cell penetrating peptide (CPP)-modified liposome, with the CPP additionally functionalised with a photosensitiser that is targeted to endolysosomal membranes. This innovation opens the way for the efficient delivery of a range of biotherapeutics by the PCI approach, incorporating a clinically proven liposome delivery platform and using bioorthogonal ligation chemistries to append photosensitisers and peptides of choice

    The use of dipeptide derivatives of 5-aminolaevulinic acid promotes their entry to tumor cells and improves tumor selectivity of photodynamic therapy

    Get PDF
    The use of endogenous protoporphyrin IX generated after administration of 5-aminolaevulinic acid (ALA) has led to many applications in photodynamic therapy (PDT). However, the bioavailability of ALA is limited by its hydrophilic properties and limited cell uptake. A promising approach to optimize the efficacy of ALA-PDT is to deliver ALA in the form of prodrugs to mask its hydrophilic nature. The aim of this work was to evaluate the potential of two ALA dipeptide derivatives, N-acetyl terminated leucinyl-ALA methyl ester (Ac-Leu-ALA-Me) and phenylalanyl-ALA methyl ester (Ac-Phe-ALA-Me), for their use in PDT of cancer, by investigating the generation of protoporphyrin IX in an oncogenic cell line (PAM212-Ras), and in a subcutaneous tumor model. In our in vitro studies, both derivatives were more effective than ALA in PDT treatment, at inducing the same protoporphyrin IX levels but at 50- to 100-fold lower concentrations, with the phenylalanyl derivative being the most effective. The efficient release of ALA from Ac-Phe-ALA-Me appears to be consistent with the reported substrate and inhibitor preferences of acylpeptide hydrolase. In vivo studies revealed that topical application of the peptide prodrug Ac-Phe-ALA-Me gave greater selectivity than with ALA itself, and induced tumor photodamage, whereas systemic administration improved ALA-induced porphyrin generation in terms of equivalent doses administered, without induction of toxic effects. Our data support the possibility of using particularly Ac-Phe-ALA-Me both for topical treatment of basal cell carcinomas and for systemic administration. Further chemical fine-tuning of this prodrug template should yield additional compounds for enhanced ALA-PDT with potential for translation to the clinic

    Childhood Asthma and Environmental Exposures at Swimming Pools: State of the Science and Research Recommendations

    Get PDF
    OBJECTIVES: Recent studies have explored the potential for swimming pool disinfection by-products (DBPs), which are respiratory irritants, to cause asthma in young children. Here we describe the state of the science on methods for understanding children's exposure to DBPs and biologics at swimming pools and associations with new-onset childhood asthma and recommend a research agenda to improve our understanding of this issue. DATA SOURCES: A workshop was held in Leuven, Belgium, 21-23 August 2007, to evaluate the literature and to develop a research agenda to better understand children's exposures in the swimming pool environment and their potential associations with new-onset asthma. Participants, including clinicians, epidemiologists, exposure scientists, pool operations experts, and chemists, reviewed the literature, prepared background summaries, and held extensive discussions on the relevant published studies, knowledge of asthma characterization and exposures at swimming pools, and epidemiologic study designs. SYNTHESIS: Childhood swimming and new-onset childhood asthma have clear implications for public health. If attendance at indoor pools increases risk of childhood asthma, then concerns are warranted and action is necessary. If there is no such relationship, these concerns could unnecessarily deter children from indoor swimming and/or compromise water disinfection. CONCLUSIONS: Current evidence of an association between childhood swimming and new-onset asthma is suggestive but not conclusive. Important data gaps need to be filled, particularly in exposure assessment and characterization of asthma in the very young. Participants recommended that additional evaluations using a multidisciplinary approach are needed to determine whether a clear association exists

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Seascape ecology : identifying research priorities for an emerging ocean sustainability science

    Get PDF
    Seascape ecology, the marine-centric counterpart to landscape ecology, is rapidly emerging as an interdisciplinary and spatially explicit ecological science with relevance to marine management, biodiversity conservation, and restoration. While important progress in this field has been made in the past decade, there has been no coherent prioritisation of key research questions to help set the future research agenda for seascape ecology. We used a 2-stage modified Delphi method to solicit applied research questions from academic experts in seascape ecology and then asked respondents to identify priority questions across 9 interrelated research themes using 2 rounds of selection. We also invited senior management/conservation practitioners to prioritise the same research questions. Analyses highlighted congruence and discrepancies in perceived priorities for applied research. Themes related to both ecological concepts and management practice, and those identified as priorities include seascape change, seascape connectivity, spatial and temporal scale, ecosystem-based management, and emerging technologies and metrics. Highest-priority questions (upper tercile) received 50% agreement between respondent groups, and lowest priorities (lower tercile) received 58% agreement. Across all 3 priority tiers, 36 of the 55 questions were within a ±10% band of agreement. We present the most important applied research questions as determined by the proportion of votes received. For each theme, we provide a synthesis of the research challenges and the potential role of seascape ecology. These priority questions and themes serve as a roadmap for advancing applied seascape ecology during, and beyond, the UN Decade of Ocean Science for Sustainable Development (2021-2030)

    EAACI position paper on occupational rhinitis

    Get PDF
    The present document is the result of a consensus reached by a panel of experts from European and non-European countries on Occupational Rhinitis (OR), a disease of emerging relevance which has received little attention in comparison to occupational asthma. The document covers the main items of OR including epidemiology, diagnosis, management, socio-economic impact, preventive strategies and medicolegal issues. An operational definition and classification of OR tailored on that of occupational asthma, as well as a diagnostic algorithm based on steps allowing for different levels of diagnostic evidence are proposed. The needs for future research are pointed out. Key messages are issued for each item

    Erratum: Measurement of angular and momentum distributions of charged particles within and around jets in Pb + Pb and pp collisions at √sNN = 5.02 TeV with the ATLAS detector [Phys. Rev. C 100 , 064901 (2019)]

    Get PDF
    corecore