36 research outputs found

    Diagnostic value of tachycardia features and pacing maneuvers during paroxysmal supraventricular tachycardia

    Get PDF
    AbstractOBJECTIVESThe purpose of this prospective study was to quantitate the diagnostic value of several tachycardia features and pacing maneuvers in patients with paroxysmal supraventricular tachycardia (PSVT) in the electrophysiology laboratory.BACKGROUNDNo study has prospectively compared the value of multiple diagnostic tools in a large group of patients with PSVT.METHODSOne hundred ninety-six consecutive patients who had 200 inducible sustained PSVTs during an electrophysiology procedure were included. The diagnostic values of four baseline electrophysiologic parameters, nine tachycardia features and five diagnostic pacing maneuvers were quantified.RESULTSThe only tachycardia characteristic that was diagnostic of atrioventricular (AV) nodal reentry was a septal ventriculoatrial (VA) time of <70 ms, and no pacing maneuver was diagnostic for AV nodal reentry. An increase in the VA interval with the development of a bundle branch block was the only tachycardia characteristic that was diagnostic for orthodromic tachycardia, but it occurred in only 7% of all tachycardias. An atrial-atrial-ventricular response upon cessation of ventricular overdrive pacing was diagnostic of atrial tachycardia, and this maneuver could be applied to 78% of all tachycardias. Burst ventricular pacing excluded atrial tachycardia when the tachycardia terminated without depolarization of the atrium, but the result could be obtained only in 27% of patients.CONCLUSIONSThis prospective study quantitates the diagnostic value of multiple observations and pacing maneuvers that are commonly used during PSVT in the electrophysiology laboratory. The findings demonstrate that diagnostic techniques rarely provide a diagnosis when used individually. Therefore, careful observations and multiple pacing maneuvers are often required for an accurate diagnosis during PSVT. The results of this study provide a useful reference with which new diagnostic techniques can be compared

    Mapping and Ablation of Frequent Post-Infarction Premature Ventricular Complexes

    Full text link
    Mapping of Post-Infarction PVCs .  Introduction: Premature ventricular complexes (PVCs) occur frequently in patients with heart disease. The sites of origin of PVCs in patients with prior myocardial infarction and the response to catheter ablation have not been systematically assessed. Methods and Results: In 28 consecutive patients (24 men, age 60 ± 10, ejection fraction [EF] 0.37 ± 0.14) with remote myocardial infarction referred for catheter ablation of symptomatic refractory PVCs, the PVCs were mapped by activation mapping or pace mapping using an irrigated-tip catheter in conjunction with an electroanatomic mapping system. The site of origin (SOO) was classified as being within low-voltage (scar) tissue (amplitude ≤1.5 mV) or tissue with preserved voltage (>1.5 mV). The SOO was confined to endocardial scar tissue in 24/28 patients (86%). The SOO was outside of scar in 3 patients and could not be identified in 1 patient. At the SOO, local endocardial activation preceded the PVC by 46 ± 19 ms, and the electrogram amplitude during sinus rhythm was 0.48 ± 0.34 mV. The PVCs were effectively ablated in 25/28 patients (89%), resulting in a decrease in PVC burden on a 24-hour Holter monitor from 15.6 ± 12.3% to 2.4 ± 4.2% (P < 0.001). The SOO most often was confined to scar tissue located in the left ventricular septum and the papillary muscles. Conclusion: Similar to post-infarction ventricular tachycardia, PVCs after remote myocardial infarction most often originate within scar tissue. Catheter ablation of these PVCs has a high-success rate. (J Cardiovasc Electrophysiol, Vol. 21, pp. 1002-1008, September 2010)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79266/1/j.1540-8167.2010.01771.x.pd

    High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy with Cardiovascular Deep Learning

    Full text link
    Left ventricular hypertrophy (LVH) results from chronic remodeling caused by a broad range of systemic and cardiovascular disease including hypertension, aortic stenosis, hypertrophic cardiomyopathy, and cardiac amyloidosis. Early detection and characterization of LVH can significantly impact patient care but is limited by under-recognition of hypertrophy, measurement error and variability, and difficulty differentiating etiologies of LVH. To overcome this challenge, we present EchoNet-LVH - a deep learning workflow that automatically quantifies ventricular hypertrophy with precision equal to human experts and predicts etiology of LVH. Trained on 28,201 echocardiogram videos, our model accurately measures intraventricular wall thickness (mean absolute error [MAE] 1.4mm, 95% CI 1.2-1.5mm), left ventricular diameter (MAE 2.4mm, 95% CI 2.2-2.6mm), and posterior wall thickness (MAE 1.2mm, 95% CI 1.1-1.3mm) and classifies cardiac amyloidosis (area under the curve of 0.83) and hypertrophic cardiomyopathy (AUC 0.98) from other etiologies of LVH. In external datasets from independent domestic and international healthcare systems, EchoNet-LVH accurately quantified ventricular parameters (R2 of 0.96 and 0.90 respectively) and detected cardiac amyloidosis (AUC 0.79) and hypertrophic cardiomyopathy (AUC 0.89) on the domestic external validation site. Leveraging measurements across multiple heart beats, our model can more accurately identify subtle changes in LV geometry and its causal etiologies. Compared to human experts, EchoNet-LVH is fully automated, allowing for reproducible, precise measurements, and lays the foundation for precision diagnosis of cardiac hypertrophy. As a resource to promote further innovation, we also make publicly available a large dataset of 23,212 annotated echocardiogram videos

    Caldera resurgence during the 2018 eruption of Sierra Negra volcano, Galápagos Islands.

    Get PDF
    Recent large basaltic eruptions began after only minor surface uplift and seismicity, and resulted in caldera subsidence. In contrast, some eruptions at Galápagos Island volcanoes are preceded by prolonged, large amplitude uplift and elevated seismicity. These systems also display long-term intra-caldera uplift, or resurgence. However, a scarcity of observations has obscured the mechanisms underpinning such behaviour. Here we combine a unique multiparametric dataset to show how the 2018 eruption of Sierra Negra contributed to caldera resurgence. Magma supply to a shallow reservoir drove 6.5 m of pre-eruptive uplift and seismicity over thirteen years, including an Mw5.4 earthquake that triggered the eruption. Although co-eruptive magma withdrawal resulted in 8.5 m of subsidence, net uplift of the inner-caldera on a trapdoor fault resulted in 1.5 m of permanent resurgence. These observations reveal the importance of intra-caldera faulting in affecting resurgence, and the mechanisms of eruption in the absence of well-developed rift systems

    Variability independent of mean blood pressure as a real-world measure of cardiovascular risk

    Get PDF
    BackgroundIndividual-level blood pressure (BP) variability, independent of mean BP levels, has been associated with increased risk for cardiovascular events in cohort studies and clinical trials using standardized BP measurements. The extent to which BP variability relates to cardiovascular risk in the real-world clinical practice setting is unclear. We sought to determine if BP variability in clinical practice is associated with adverse cardiovascular outcomes using clinically generated data from the electronic health record (EHR).MethodsWe identified 42,482 patients followed continuously at a single academic medical center in Southern California between 2013 and 2019 and calculated their systolic and diastolic BP variability independent of the mean (VIM) over the first 3 years of the study period. We then performed multivariable Cox proportional hazards regression to examine the association between VIM and both composite and individual outcomes of interest (incident myocardial infarction, heart failure, stroke, and death).FindingsBoth systolic (HR, 95% CI 1.22, 1.17–1.28) and diastolic VIM (1.24, 1.19–1.30) were positively associated with the composite outcome, as well as all individual outcome measures. These findings were robust to stratification by age, sex and clinical comorbidities. In sensitivity analyses using a time-shifted follow-up period, VIM remained significantly associated with the composite outcome for both systolic (1.15, 1.11–1.20) and diastolic (1.18, 1.13–1.22) values.InterpretationVIM derived from clinically generated data remains associated with adverse cardiovascular outcomes and represents a risk marker beyond mean BP, including in important demographic and clinical subgroups. The demonstrated prognostic ability of VIM derived from non-standardized BP readings indicates the utility of this measure for risk stratification in a real-world practice setting, although residual confounding from unmeasured variables cannot be excluded.</p

    ICDP workshop on the Lake Tanganyika Scientific Drilling Project: a late Miocene–present record of climate, rifting, and ecosystem evolution from the world's oldest tropical lake

    Get PDF
    The Neogene and Quaternary are characterized by enormous changes in global climate and environments, including global cooling and the establishment of northern high-latitude glaciers. These changes reshaped global ecosystems, including the emergence of tropical dry forests and savannahs that are found in Africa today, which in turn may have influenced the evolution of humans and their ancestors. However, despite decades of research we lack long, continuous, well-resolved records of tropical climate, ecosystem changes, and surface processes necessary to understand their interactions and influences on evolutionary processes. Lake Tanganyika, Africa, contains the most continuous, long continental climate record from the mid-Miocene (∼10 Ma) to the present anywhere in the tropics and has long been recognized as a top-priority site for scientific drilling. The lake is surrounded by the Miombo woodlands, part of the largest dry tropical biome on Earth. Lake Tanganyika also harbors incredibly diverse endemic biota and an entirely unexplored deep microbial biosphere, and it provides textbook examples of rift segmentation, fault behavior, and associated surface processes. To evaluate the interdisciplinary scientific opportunities that an ICDP drilling program at Lake Tanganyika could offer, more than 70 scientists representing 12 countries and a variety of scientific disciplines met in Dar es Salaam, Tanzania, in June 2019. The team developed key research objectives in basin evolution, source-to-sink sedimentology, organismal evolution, geomicrobiology, paleoclimatology, paleolimnology, terrestrial paleoecology, paleoanthropology, and geochronology to be addressed through scientific drilling on Lake Tanganyika. They also identified drilling targets and strategies, logistical challenges, and education and capacity building programs to be carried out through the project. Participants concluded that a drilling program at Lake Tanganyika would produce the first continuous Miocene–present record from the tropics, transforming our understanding of global environmental change, the environmental context of human origins in Africa, and providing a detailed window into the dynamics, tempo and mode of biological diversification and adaptive radiations.© Author(s) 2020. This open access article is distributed under the Creative Commons Attribution 4.0 License

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase&nbsp;1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation&nbsp;disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age&nbsp; 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score&nbsp; 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc&nbsp;= 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N&nbsp;= 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in&nbsp;Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in&nbsp;Asia&nbsp;and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Evidence for cross rift structural controls on deformation and seismicity at a continental rift caldera

    Get PDF
    In continental rifts structural heterogeneities, such as pre-existing faults and foliations, are thought to influence shallow crustal processes, particularly the formation of rift faults, magma reservoirs and surface volcanism. We focus on the Corbetti caldera, in the southern central Main Ethiopian Rift. We measure the surface deformation between 22nd June 2007 and 25th March 2009 using ALOS and ENVISAT SAR interferograms and observe a semi-circular pattern of deformation bounded by a sharp linear feature cross-cutting the caldera, coincident with the caldera long axis. The signal reverses in sign but is not seasonal: from June to December 2007 the region south of this structure moves upwards 3 cm relative to the north, while from December 2007 until November 2008 it subsides by 2 cm. Comparison of data taken from two different satellite look directions show that the displacement is primarily vertical. We discuss potential mechanisms and conclude that this deformation is associated with pressure changes within a shallow (<1 km) fault-bounded hydrothermal reservoir prior to the onset of a phase of caldera-wide uplift. Analysis of the distribution of post-caldera vents and cones inside the caldera shows their locations are statistically consistent with this fault structure, indicating that the fault has also controlled the migration of magma from a reservoir to the surface over tens of thousands of years. Spatial patterns of seismicity are consistent with a cross-rift structure that extents outside the caldera and to a depth of ∼30 km, and patterns of seismic anisotropy suggests stress partitioning occurs across the structure. We discuss the possible nature of this structure, and conclude that it is most likely associated with the Goba–Bonga lineament, which cross-cuts and pre-dates the current rift. Our observations show that pre-rift structures play an important role in magma transport and shallow hydrothermal processes, and therefore they should not be neglected when discussing these processes

    Magma plumbing systems: a geophysical perspective

    Get PDF
    Over the last few decades, significant advances in using geophysical techniques to image the structure of magma plumbing systems have enabled the identification of zones of melt accumulation, crystal mush development, and magma migration. Combining advanced geophysical observations with petrological and geochemical data has arguably revolutionised our understanding of, and afforded exciting new insights into, the development of entire magma plumbing systems. However, divisions between the scales and physical settings over which these geophysical, petrological, and geochemical methods are applied still remain. To characterise some of these differences and promote the benefits of further integration between these methodologies, we provide a review of geophysical techniques and discuss how they can be utilised to provide a structural context for and place physical limits on the chemical evolution of magma plumbing systems. For example, we examine how Interferometric Synthetic Aperture Radar (InSAR), coupled with Global Positioning System (GPS) and Global Navigation Satellite System (GNSS) data, and seismicity may be used to track magma migration in near real-time. We also discuss how seismic imaging, gravimetry and electromagnetic data can identify contemporary melt zones, magma reservoirs and/or crystal mushes. These techniques complement seismic reflection data and rock magnetic analyses that delimit the structure and emplacement of ancient magma plumbing systems. For each of these techniques, with the addition of full-waveform inversion (FWI), the use of Unmanned Aerial Vehicles (UAVs) and the integration of geophysics with numerical modelling, we discuss potential future directions. We show that approaching problems concerning magma plumbing systems from an integrated petrological, geochemical, and geophysical perspective will undoubtedly yield important scientific advances, providing exciting future opportunities for the volcanological community
    corecore