409 research outputs found

    Radial Growth of Qilian Juniper on the Northeast Tibetan Plateau and Potential Climate Associations

    Get PDF
    There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110–2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes

    Phase I study of TP300 in patients with advanced solid tumors with pharmacokinetic, pharmacogenetic and pharmacodynamic analyses

    Get PDF
    Background: A Phase I dose escalation first in man study assessed maximum tolerated dose (MTD), dose-limiting toxicity (DLT) and recommended Phase II dose of TP300, a water soluble prodrug of the Topo-1 inhibitor TP3076, and active metabolite, TP3011. <p/>Methods: Eligible patients with refractory advanced solid tumors, adequate performance status, haematologic, renal, and hepatic function. TP300 was given as a 1-hour i.v. infusion 3-weekly and pharmacokinetic (PK) profiles of TP300, TP3076 and TP3011 were analysed. Polymorphisms in CYP2D6, AOX1 and UGT1A1 were studied and DNA strand-breaks measured in peripheral blood mononuclear cells (PBMCs). <p/>Results: 32 patients received TP300 at 1, 2, 4, 6, 8, 10, 12 mg/m2. MTD was 10 mg/m2; DLTs at 12 (2/4 patients) and 10 mg/m2 (3/12) included thrombocytopenia and febrile neutropenia; diarrhea was uncommon. Six patients (five had received irinotecan), had stable disease for 1.5-5 months. TP3076 showed dose proportionality in AUC and Cmax from 1--10 mg/m2. Genetic polymorphisms had no apparent influence on exposure. DNA strand-breaks were detected after TP300 infusion. <p/>Conclusions: TP300 had predictable hematologic toxicity, and diarrhea was uncommon. AUC at MTD is substantially greater than for SN38. TP3076 and TP3011 are equi-potent with SN38, suggesting a PK advantage

    Two stages of parafoveal processing during reading: Evidence from a display change detection task

    Get PDF
    We used a display change detection paradigm (Slattery, Angele, & Rayner Human Perception and Performance, 37, 1924–1938 2011) to investigate whether display change detection uses orthographic regularity and whether detection is affected by the processing difficulty of the word preceding the boundary that triggers the display change. Subjects were significantly more sensitive to display changes when the change was from a nonwordlike preview than when the change was from a wordlike preview, but the preview benefit effect on the target word was not affected by whether the preview was wordlike or nonwordlike. Additionally, we did not find any influence of preboundary word frequency on display change detection performance. Our results suggest that display change detection and lexical processing do not use the same cognitive mechanisms. We propose that parafoveal processing takes place in two stages: an early, orthography-based, preattentional stage, and a late, attention-dependent lexical access stage

    Endovascular equipoise shift in a phase III randomized clinical trial of sonothrombolysis for acute ischemic stroke

    Get PDF
    Background: Results of our recently published phase III randomized clinical trial of ultrasound-enhanced thrombolysis (sonothrombolysis) using an operator-independent, high frequency ultrasound device revealed heterogeneity of patient recruitment among centers. Methods: We performed a post hoc analysis after excluding subjects that were recruited at centers reporting a decline in the balance of randomization between sonothrombolysis and concurrent endovascular trials. Results: From a total of 676 participants randomized in the CLOTBUST-ER trial we identified 52 patients from 7 centers with perceived equipoise shift in favor of endovascular treatment. Post hoc sensitivity analysis in the intention-to-treat population adjusted for age, National Institutes of Health Scale score at baseline, time from stroke onset to tPA bolus and baseline serum glucose showed a significant (p < 0.01) interaction of perceived endovascular equipoise shift on the association between sonothrombolysis and 3 month functional outcome [adjusted common odds ratio (cOR) in centers with perceived endovascular equipoise shift: 0.22, 95% CI 0.06–0.75; p = 0.02; adjusted cOR for centers without endovascular equipoise shift: 1.20, 95% CI 0.89–1.62; p = 0.24)]. After excluding centers with perceived endovascular equipoise shift, patients randomized to sonothrombolysis had higher odds of 3 month functional independence (mRS scores 0–2) compared with patients treated with tPA only (adjusted OR: 1.53; 95% CI 1.01–2.31; p = 0.04). Conclusion: Our experience in CLOTBUST-ER indicates that increasing implementation of endovascular therapies across major academic stroke centers raises significant challenges for clinical trials aiming to test noninterventional or adjuvant reperfusion strategies

    The development of a 16S rRNA gene based PCR for the identification of Streptococcus pneumoniae and comparison with four other species specific PCR assays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Streptococcus pneumoniae </it>is one of the most frequently encountered pathogens in humans but its differentiation from closely related but less pathogenic streptococci remains a challenge.</p> <p>Methods</p> <p>This report describes a newly-developed PCR assay (Spne-PCR), amplifying a 217 bp product of the 16S rRNA gene of <it>S. pneumoniae</it>, and its performance compared to other genotypic and phenotypic tests.</p> <p>Results</p> <p>The new PCR assay designed in this study, proved to be specific at 57°C for <it>S. pneumoniae</it>, not amplifying <it>S. pseudopneumoniae </it>or any other streptococcal strain or any strains from other upper airway pathogenic species. PCR assays (psaA, LytA, ply, spn9802-PCR) were previously described for the specific amplification of <it>S. pneumoniae</it>, but <it>psaA</it>-PCR was the only one found not to cross-react with <it>S. pseudopneumoniae</it>.</p> <p>Conclusion</p> <p>Spne-PCR, developed for this study, and psaA-PCR were the only two assays which did not mis-identify <it>S. pseudopneumoniae </it>as <it>S. pneumoniae</it>. Four other PCR assays and the AccuProbe assay were unable to distinguish between these species.</p

    Bias in trials comparing paired continuous tests can cause researchers to choose the wrong screening modality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To compare the diagnostic accuracy of two continuous screening tests, a common approach is to test the difference between the areas under the receiver operating characteristic (ROC) curves. After study participants are screened with both screening tests, the disease status is determined as accurately as possible, either by an invasive, sensitive and specific secondary test, or by a less invasive, but less sensitive approach. For most participants, disease status is approximated through the less sensitive approach. The invasive test must be limited to the fraction of the participants whose results on either or both screening tests exceed a threshold of suspicion, or who develop signs and symptoms of the disease after the initial screening tests.</p> <p>The limitations of this study design lead to a bias in the ROC curves we call <it>paired screening trial bias</it>. This bias reflects the synergistic effects of inappropriate reference standard bias, differential verification bias, and partial verification bias. The absence of a gold reference standard leads to inappropriate reference standard bias. When different reference standards are used to ascertain disease status, it creates differential verification bias. When only suspicious screening test scores trigger a sensitive and specific secondary test, the result is a form of partial verification bias.</p> <p>Methods</p> <p>For paired screening tests with bivariate normally distributed scores, we give formulae and programs to quantify the effect of <it>paired screening trial bias </it>on a paired comparison of area under the curves. We fix the prevalence of disease, and the chance a diseased subject manifests signs and symptoms. We derive the formulas for true sensitivity and specificity, and those for the sensitivity and specificity observed by the study investigator.</p> <p>Results</p> <p>The observed area under the ROC curves is quite different from the true area under the ROC curves. The typical direction of the bias is a strong inflation in sensitivity, paired with a concomitant slight deflation of specificity.</p> <p>Conclusion</p> <p>In paired trials of screening tests, when area under the ROC curve is used as the metric, bias may lead researchers to make the wrong decision as to which screening test is better.</p

    Synthetic asters as elastic and radial skeletons

    Get PDF
    The radial geometry with rays radiated from a common core occurs ubiquitously in nature for its symmetry and functions. Herein, we report a class of synthetic asters with well-defined core-ray geometry that can function as elastic and radial skeletons to harbor nano- and microparticles. We fabricate the asters in a single, facile, and high-yield step that can be readily scaled up; specifically, amphiphilic gemini molecules self-assemble in water into asters with an amorphous core and divergently growing, twisted crystalline ribbons. The asters can spontaneously position microparticles in the cores, along the radial ribbons, or by the outer rims depending on particle sizes and surface chemistry. Their mechanical properties are determined on single- and multiple-aster levels. We further maneuver the synthetic asters as building blocks to form higher-order structures in virtue of aster-aster adhesion induced by ribbon intertwining. We envision the astral structures to act as rudimentary spatial organizers in nanoscience for coordinated multicomponent systems, possibly leading to emergent, synergistic functions

    Predictive Power Estimation Algorithm (PPEA) - A New Algorithm to Reduce Overfitting for Genomic Biomarker Discovery

    Get PDF
    Toxicogenomics promises to aid in predicting adverse effects, understanding the mechanisms of drug action or toxicity, and uncovering unexpected or secondary pharmacology. However, modeling adverse effects using high dimensional and high noise genomic data is prone to over-fitting. Models constructed from such data sets often consist of a large number of genes with no obvious functional relevance to the biological effect the model intends to predict that can make it challenging to interpret the modeling results. To address these issues, we developed a novel algorithm, Predictive Power Estimation Algorithm (PPEA), which estimates the predictive power of each individual transcript through an iterative two-way bootstrapping procedure. By repeatedly enforcing that the sample number is larger than the transcript number, in each iteration of modeling and testing, PPEA reduces the potential risk of overfitting. We show with three different cases studies that: (1) PPEA can quickly derive a reliable rank order of predictive power of individual transcripts in a relatively small number of iterations, (2) the top ranked transcripts tend to be functionally related to the phenotype they are intended to predict, (3) using only the most predictive top ranked transcripts greatly facilitates development of multiplex assay such as qRT-PCR as a biomarker, and (4) more importantly, we were able to demonstrate that a small number of genes identified from the top-ranked transcripts are highly predictive of phenotype as their expression changes distinguished adverse from nonadverse effects of compounds in completely independent tests. Thus, we believe that the PPEA model effectively addresses the over-fitting problem and can be used to facilitate genomic biomarker discovery for predictive toxicology and drug responses

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore