3,490 research outputs found

    Revisit Sparse Polynomial Interpolation based on Randomized Kronecker Substitution

    Full text link
    In this paper, a new reduction based interpolation algorithm for black-box multivariate polynomials over finite fields is given. The method is based on two main ingredients. A new Monte Carlo method is given to reduce black-box multivariate polynomial interpolation to black-box univariate polynomial interpolation over any ring. The reduction algorithm leads to multivariate interpolation algorithms with better or the same complexities most cases when combining with various univariate interpolation algorithms. We also propose a modified univariate Ben-or and Tiwarri algorithm over the finite field, which has better total complexity than the Lagrange interpolation algorithm. Combining our reduction method and the modified univariate Ben-or and Tiwarri algorithm, we give a Monte Carlo multivariate interpolation algorithm, which has better total complexity in most cases for sparse interpolation of black-box polynomial over finite fields

    Glioblastoma stem cells induce quiescence in surrounding neural stem cells via Notch signalling.

    Get PDF
    There is increasing evidence demonstrating that adult neural stem cells (NSCs) are a cell of origin of glioblastoma. Here we analyzed the interaction between transformed and wild-type NSCs isolated from the adult mouse subventricular zone niche. We found that transformed NSCs are refractory to quiescence-inducing signals. Unexpectedly, we also demonstrated that these cells induce quiescence in surrounding wild-type NSCs in a cell–cell contact and Notch signaling-dependent manner. Our findings therefore suggest that oncogenic mutations are propagated in the stem cell niche not just through cell-intrinsic advantages, but also by outcompeting neighboring stem cells through repression of their proliferation

    Estimating Discrete Markov Models From Various Incomplete Data Schemes

    Full text link
    The parameters of a discrete stationary Markov model are transition probabilities between states. Traditionally, data consist in sequences of observed states for a given number of individuals over the whole observation period. In such a case, the estimation of transition probabilities is straightforwardly made by counting one-step moves from a given state to another. In many real-life problems, however, the inference is much more difficult as state sequences are not fully observed, namely the state of each individual is known only for some given values of the time variable. A review of the problem is given, focusing on Monte Carlo Markov Chain (MCMC) algorithms to perform Bayesian inference and evaluate posterior distributions of the transition probabilities in this missing-data framework. Leaning on the dependence between the rows of the transition matrix, an adaptive MCMC mechanism accelerating the classical Metropolis-Hastings algorithm is then proposed and empirically studied.Comment: 26 pages - preprint accepted in 20th February 2012 for publication in Computational Statistics and Data Analysis (please cite the journal's paper

    Uniform Bahadur Representation for Nonparametric Censored Quantile Regression: A Redistribution-of-Mass Approach

    Get PDF
    Censored quantile regressions have received a great deal of attention in the literature. In a linear setup, recent research has found that an estimator based on the idea of “redistribution-of-mass” in Efron (1967, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 4, pp. 831–853, University of California Press) has better numerical performance than other available methods. In this paper, this idea is combined with the local polynomial kernel smoothing for nonparametric quantile regression of censored data. We derive the uniform Bahadur representation for the estimator and, more importantly, give theoretical justification for its improved efficiency over existing estimation methods. We include an example to illustrate the usefulness of such a uniform representation in the context of sufficient dimension reduction in regression analysis. Finally, simulations are used to investigate the finite sample performance of the new estimator

    A traffic light grading system of hip dysplasia to predict the success of arthroscopic hip surgery

    Get PDF
    Background: The role of hip arthroscopic surgery in dysplasia is controversial. Purpose: To determine the 7-year joint preservation rate after hip arthroscopic surgery in hip dysplasia and identify anatomic and intraoperative features that predict the success of hip preservation with arthroscopic surgery, allowing the formulation of an evidence-based classification system. Study Design: Case-control study; Level of evidence, 3. Methods: Between 2008 and 2013, 111 hips with dysplastic features (acetabular index [AI] &gt;10° and/or lateral center-edge angle [LCEA] &lt;25°) that underwent arthroscopic surgery were identified. Clinical, radiological, and operative findings and the type of procedure performed were reviewed. Radiographic evaluations of the operated hip (AI, LCEA, extrusion index) were performed. Outcome measures included whether the hip was preserved (ie, did not require arthroplasty) at follow-up and the preoperative and postoperative Non-Arthritic Hip Score (NAHS) and Hip disability and Osteoarthritis Outcome Score (HOOS). The AI and LCEA were calculated, factored by a measure of articular wear (AIf and LCEAf, respectively), according to the University College Hospital, London (UCL) grading system as follows: AIf = AI × (number of UCL wear zones + 1), and LCEAf = LCEA / (number of UCL wear zones + 1). A contour plot of the resulting probability value of failure for every combination of AIf and LCEAf allowed for the determination of the zones with the lowest and highest incidences of failure to preserve the hip. Results: The mean AI and LCEA were 9.8° and 18.0°, respectively. At a mean follow-up of 4.5 years (range, 0.4-8.3 years), 33 hips had failed, requiring hip arthroplasty. The 7-year joint survival rate was 68%. The mean improvements in the NAHS and HOOS were 11 ( P = .001) and 22.8 ( P &lt; .001) points, respectively. The zone with the greatest chance of joint preservation (odds ratio, 10; P &lt; .001) was the green zone, with an AIf of 0° to 15° and an LCEAf of 15° to 25°; in contrast, the zone with the greatest chance of failure (odds ratio, 10; P &lt; .001) was the red zone, with an AIf of 20° to 100° and an LCEAf of 0° to 10°. Conclusion: Overall, the 7-year hip survival rate in hip dysplasia appears inferior compared with that reported in femoroacetabular impingement (78%). Hip arthroscopic surgery is associated with an excellent chance of hip preservation in mild dysplasia (green zone: AI = 0°-15°, LCEA = 15°-25°) and no articular wear. The authors advise that the greatest caution should be used when considering arthroscopic options in cases of severe dysplasia (red zone: AI &gt;20° and/or LCEA &lt;10°). </jats:sec

    The connecting health and technology study: A 6-month randomized controlled trial to improve nutrition behaviours using a mobile food record and text messaging support in young adults

    Get PDF
    © 2016 Kerr et al. Background: Early adulthood represents the transition to independent living which is a period when changes in diet and body weight are likely to occur. This presents an ideal time for health interventions to reduce the effect of health problems and risk factors for chronic disease in later life. As young adults are high users of mobile devices, interventions that use this technology may improve engagement. The Connecting Health and Technology study aimed to evaluate the effectiveness of tailored dietary feedback and weekly text messaging to improve dietary intake of fruit, vegetables and junk food over 6 months among a population-based sample of men and women (aged 18-30 years). Methods: A three-arm, parallel, randomized control trial was conducted. After baseline assessments, participants were randomized to one of three groups: A) dietary feedback and weekly text messages, B) dietary feedback only or C) control group. Dietary intake was assessed using a mobile food record App (mFR) where participants captured images of foods and beverages consumed over 4-days at baseline and post-intervention. The primary outcomes were changes in serves of fruits, vegetables, energy-dense nutrient-poor (EDNP) foods and sugar-sweetened beverages (SSB). The intervention effects were assessed using linear mixed effect models for change in food group serves. Results: Young adults (n = 247) were randomized to group A (n = 82), group B (n = 83), or group C (n = 82). Overall, no changes in food group serves for either intervention groups were observed. An unanticipated outcome was a mean weight reduction of 1.7 kg (P = .02) among the dietary feedback only. Men who received dietary feedback only, significantly reduced their serves of EDNP foods by a mean of 1.4 serves/day (P = .02). Women who received dietary feedback only significantly reduced their intake of SSB (P = .04) by an average of 0.2 serves/day compared with controls. Conclusions: Tailored dietary feedback only resulted in a decrease in EDNP foods in men and SSB in women, together with a reduction in body weight. Using a mobile food record for dietary assessment and tailored feedback has great potential for future health promotion interventions targeting diet and weight in young adults. Trial Registration: Australian Clinical Trials Registry Registration number: ACTRN12612000250831

    Evading innate immunity in nonviral mRNA delivery : don't shoot the messenger

    Get PDF
    In de field of non-viral gene therapy, in vitro transcribed (IVT) mRNA has emerged as a promising tool for the delivery of genetic information. Over the past few years it has become widely known the introduction of IVT mRNA into mammalian cells elicits an innate immune response which has favored mRNA use towards immunotherapeutic vaccination strategies. However, for non-immunotherapy related applications this intrinsic immune-stimulatory activity directly interferes with the aimed therapeutic outcome, as it can seriously compromise the expression of the desired protein. This review presents an overview of the immune-related obstacles that limit mRNA advance for non-immunotherapy related applications

    Stable amorphous georgeite as a precursor to a high-activity catalyst .

    Get PDF
    Copper and zinc form an important group of hydroxycarbonate minerals that include zincian malachite, aurichalcite, rosasite and the exceptionally rare and unstable—and hence little known and largely ignored1—georgeite. The first three of these minerals are widely used as catalyst precursors2, 3, 4 for the industrially important methanol-synthesis and low-temperature water–gas shift (LTS) reactions5, 6, 7, with the choice of precursor phase strongly influencing the activity of the final catalyst. The preferred phase2, 3, 8, 9, 10 is usually zincian malachite. This is prepared by a co-precipitation method that involves the transient formation of georgeite11; with few exceptions12 it uses sodium carbonate as the carbonate source, but this also introduces sodium ions—a potential catalyst poison. Here we show that supercritical antisolvent (SAS) precipitation using carbon dioxide (refs 13, 14), a process that exploits the high diffusion rates and solvation power of supercritical carbon dioxide to rapidly expand and supersaturate solutions, can be used to prepare copper/zinc hydroxycarbonate precursors with low sodium content. These include stable georgeite, which we find to be a precursor to highly active methanol-synthesis and superior LTS catalysts. Our findings highlight the value of advanced synthesis methods in accessing unusual mineral phases, and show that there is room for exploring improvements to established industrial catalysts

    The Impact of Climate Change on Virginia\u27s Coastal Areas

    Full text link
    As part of HJ47/SJ47 (2020), the Virginia General Assembly directed the Joint Commission on Technology and Science (JCOTS) to study the “safety, quality of life, and economic consequences of weather and climate-related events on coastal areas in Virginia.” In pursuit of this goal, the commission was to “accept any scientific and technical assistance provided by the nonpartisan, volunteer Virginia Academy of Science, Engineering, and Medicine (VASEM). VASEM convened an expert study board with representation from the Office of the Governor, planning district commissions in coastal Virginia, The Port of Virginia, the Virginia Economic Development Partnership, state universities, private industry, and law firms. In producing the report, the board followed methods similar to those used by the National Academies of Science, Engineering, and Medicine by convening an expert committee tasked with studying and reporting on the topic. As a result, the report represents the views and perspectives of the study board members but was not submitted for public review or comment. This report is the product of those efforts. It finds that climate change will have an increasingly disruptive effect on people living in Virginia’s coastal areas during the 21st century — and that these disruptions will have repercussions across the Commonwealth. It includes an explanation of the physical forces driving climate change, an analysis of the current and projected effects of climate change on the Commonwealth, perspectives that legislators might consider as they face these challenges, and recommendations that could help Virginia implement more productive and effective strategies to address them

    Transcriptome Analysis of Arabidopsis Wild-Type and gl3–sst sim Trichomes Identifies Four Additional Genes Required for Trichome Development

    Get PDF
    Transcriptome analyses have been performed on mature trichomes isolated from wild-type Arabidopsis leaves and on leaf trichomes isolated from the gl3–sst sim double mutant, which exhibit many attributes of immature trichomes. The mature trichome profile contained many highly expressed genes involved in cell wall synthesis, protein turnover, and abiotic stress response. The most highly expressed genes in the gl3–sst sim profile encoded ribosomal proteins and other proteins involved in translation. Comparative analyses showed that all but one of the genes encoding transcription factors previously found to be important for trichome formation, and many other trichome-important genes, were preferentially expressed in gl3–sst sim trichomes. The analysis of genes preferentially expressed in gl3–sst sim led to the identification of four additional genes required for normal trichome development. One of these was the HDG2 gene, which is a member of the HD–ZIP IV transcription factor gene family. Mutations in this gene did not alter trichome expansion, but did alter mature trichome cell walls. Mutations in BLT resulted in a loss of trichome branch formation. The relationship between blt and the phenotypically identical mutant, sti, was explored. Mutations in PEL3, which was previously shown to be required for development of the leaf cuticle, resulted in the occasional tangling of expanding trichomes. Mutations in another gene encoding a protein with an unknown function altered trichome branch formation
    corecore