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Radiation treatment planning is a crucial and time-intensive process in radiation 

therapy. This planning involves carefully designing a treatment regimen tailored to a patient’s 

specific condition, including the type, location, and size of the tumor with reference to 

surrounding healthy tissues. For prostate cancer, this tumor may be either local, locally 

advanced with extracapsular involvement, or extend into the pelvic lymph node chain. 

Automating essential parts of this process would allow for the rapid development of effective 

treatment plans and better plan optimization to enhance tumor control for better outcomes.  

The first objective of this work, to automate the treatment planning process, was the 

automatic segmentation of critical structures. Delineation of both target and normal tissue 

structures was necessary to establish the foundation for identifying where radiation must be 

delivered and what should be spared from excess radiation.  

Deep learning segmentation models were developed from retrospective CT simulation 

imaging data and clinical contours to delineate intact, postoperative, and nodal treatment 

structures for prostate cancer to accomplish this objective. Quality contours were extracted per 

established contouring guidelines in the literature. Model refinement on a holdout fine-tune 

dataset was used to verify model contours before quantitative and qualitative evaluation on the 

holdout test set. Predicted contours resulted in contours comparable in quantitative Dice-

Similarity-Coefficient (DSC) and 95% Hausdorff Distance (HD95) to proposed models in 

literature and clinically usable contours with no more than minor edits upon physician review. 

The second objective was the automation of Volumetric Modulated Arc Therapy (VMAT) 

planning for a breadth of prostate treatment scenarios. Development of VMAT plans for intact, 

postoperative, and nodal involvement treatment cases was necessary for the sequence in daily 
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treatment delivery and the prospective distribution of radiation dose to target and normal 

tissues. 

To accomplish this objective, knowledge-based planning models were separately 

developed to estimate patient-specific DVHs to guide plan optimization for radiation delivery. 

These two models were then used in this work for end-to-end testing of cases with and without 

lymph node involvement, including determining if the prostate target is intact or postoperative 

with or without treatment devices such as hydrogel spacers and rectal balloons. A sequence of 

iterative optimization runs was created to ensure hotspot reduction and target conformality.  

The findings demonstrated that plans developed from automatically generated contours 

were clinically usable with minor edits for intact and postoperative treatments without lymph 

node involvement. For treatments with lymph node involvement, dose constraints were met for 

a select set of cases without excessive rectum curvature or excessive bladder descension into 

the postoperative treatment bed. When comparing auto-segmented to clinical contours, clinical 

contours experienced similar pass rates as those achieved by auto-segmented contours. 
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CHAPTER 1: INTRODUCTION 
 

Prostate cancer remains a significant health concern in men worldwide, representing 

the second most diagnosed cancer among men in the US and the fifth leading cause of cancer-

related deaths globally (Sung et al., 2021). For disease incidence, prostate cancer ranks 

second in higher human development index countries (a composite measure of life expectancy, 

education, and per capita income) with 37.5 new cases per 100,000 men. It is estimated that 1 

in 8 men will be diagnosed with prostate cancer in their lifetime. This is in tandem with 

increases in prostate cancer by 3% annually from 2014 to 2019. In 2023, it is estimated that 

there will be over 288,000 new cases in the US alone (Siegel et al., 2023). Despite 

advancements in diagnosis and treatment, the management of prostate cancer poses 

numerous challenges due to its heterogeneity in presentation, varying clinical courses, potential 

for recurrence, and socioeconomic factors of treatment access (Gray et al., 2017). Among the 

multitude of treatment options available, radiation therapy serves as a key treatment paradigm 

for prostate cancer, offering curative potential while preserving functional outcomes and quality 

of life for men.  

In recent years, integrating deep learning techniques, particularly image segmentation 

algorithms, has emerged as a promising technology to further the advancement of treatment 

planning and delivery in prostate cancer. Deep learning-based image segmentation can 

revolutionize the delineation of target volumes and organs at risk, thereby improving the 

precision and accuracy of radiation therapy delivery while minimizing unnecessary radiation 

exposure to surrounding healthy tissues. Automation of segmentation also increases 

consistency in tissue boundary definitions, thereby reducing contour variability and the time 

necessary to outline boundaries, resulting in increased efficiency across clinical workloads 

(Baroudi et al., 2023). Deep learning algorithms can discern intricate patterns and features 

within medical images by learning from vast amounts of imaging data. This enables their 

precise delineation of anatomical structures with minimal human intervention. While atlas-
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based segmentation is another explored machine learning-based approach, this model relies 

on predefined anatomical templates (i.e., atlases) for segmentation (Conroy et al., 2021; Zhou 

et al., 2019). This is limited compared to deep learning models, which can learn intricate 

patterns beyond what is explicitly present in atlases, allowing for adaptations to various imaging 

data and more precise segmentations. Studies have demonstrated up to 15% increases in Dice 

Similarity Coefficient (DSC) performance of deep learning models compared to atlas-based 

models for prostate contouring (Balagopal et al., 2021), though not all studies obtain significant 

performance improvements (Ahn et al., 2019; Conroy et al., 2021; Zhou et al., 2019). 

For cancer treatment, the optimization of radiation delivered in treatment planning holds 

paramount importance. Radiotherapy requires precise and personalized approaches to meet 

optimal treatment outcomes while minimizing adverse effects on healthy organs and tissues. 

For newly diagnosed prostate cancer cases, initial management of the disease ranges from 

active surveillance for low-risk patients to definitive management with surgical resection of the 

prostate and seminal vesicles (prostatectomy) or definitive radiation therapy (RT). While other 

forms of treatments such as surgery, hormonal therapy, chemotherapy, and internal radiation in 

the form of brachytherapy are potential avenues for treatment, only external beam radiotherapy 

(EBRT) in the form of photon treatments will be discussed and investigated (“ NCCN 

guidelines: prostate cancer (version 3.2024).,”). 

Over the past decades, intensity-modulated radiation therapy (IMRT) and now 

volumetric-modulated arc therapy (VMAT) have been commonly used treatment modalities for 

prostate cancer (Ayuthaya et al., 2023; Fogliata et al., 2019).  Intensity modulation enables the 

delivery of a maximum dose to a desired treatment target while minimizing the dose to 

surrounding normal tissues. These inverse planning techniques demonstrate good responses 

to patients with early-stage prostate cancer due to their resultant highly conformal dose 

distributions spread across multiple treatment beams (Ayuthaya et al., 2023; Cahlon et al., 

2008; Teoh et al., 2011). The nature of inverse planning presents an iterative approach of trial-

and-error to calculate the dose to the patient to then optimize for an effective tailored plan on a 
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patient-by-patient basis (Ayuthaya et al., 2023; van Gysen et al., 2020). To add to this, there 

are complex relationships between the targets and multiple OARs to be considered, limitations 

in beam arrangements and treatment geometry, and the patient's health conditions to create a 

series of potential “trade-off” scenarios that can affect the plan's quality. The NCCN guidelines 

provide recommendations on several treatment regimens for the treatment of prostate cancer 

with external beam radiation. These include recommendations on hypo-fractionated treatments 

up to SBRT and conventional hyper-fractionated schemes allowing prescription doses up to 

95Gy. However, balancing recommendations and patient-specific conditions requires a depth 

and breadth of the treatment experience for physicians and planners to navigate (Ayuthaya et 

al., 2023; Kubo et al., 2019; Yuan et al., 2012). 

Data from prior “high quality” plans have been assembled to address the variation 

present in institutional variations to treatments and planner-by-planner variations. These 

treatment plan stores serve not only to reference previous treatment parameters that have led 

to optimal treatment for patients but also to guide planning systems to produce plans of similar 

quality prospectively (Good et al., 2013; Kaderka et al., 2021). It is from these stores of quality 

prior treatments that knowledge-based planning (KBP) can aid physicians and planners in 

improving and minimizing the variation within planning (Fogliata et al., 2019; Moore et al., 2011; 

Reddy et al., 2010; van Gysen et al., 2020). In a study comparing the average PTV dose of 

hyper-fractionated prostate treatments, knowledge-based plans resulted in statistically 

significant lower D2% values (p<0.05) compared to manually planned treatments with slightly 

lower average rectum and bladder doses (Ayuthaya et al., 2023).  

Automated treatment methods have been proposed for other cancer treatment sites 

beyond prostate cancer, including rectal, cervical, and breast cancers. Conventional 3D 

conformal techniques and intensity-modulated radiation therapy techniques have been 

automated for rectal and cervical cancers with the use of rule-based, deep learning, or 

knowledge-based methods for planning (Huang et al., 2022; Kisling et al., 2019; Rhee et al., 

2020). Convolutional neural networks for field aperture prediction and support vector machines 
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for quality assurance have also been implemented to assure treatment consistency and quality 

in these sites (Huang et al., 2022; Rhee et al., 2022, 2019). Deep learning and knowledge-

based planning methods have been proposed for breast cancer (Fogliata et al., 2022), with 

mean absolute errors for mean doses below 3% for critical targets and normal tissues (Ahn et 

al., 2021). These methods, however, focus on a limited scope of contoured treatment scenarios 

for their respective sites, constraining the potential generalizability of treatment. Therefore, 

there is a need to investigate a treatment pipeline to understand the possible limits of what can 

be included in a flexible end-to-end automated solution for photon external beam treatments. 

This thesis explores integrating deep learning-based image segmentation techniques 

with knowledge-based treatment planning for delivering radiation therapy for prostate cancer. 

Furthermore, this thesis will investigate challenges, limitations, and opportunities associated 

with implementing deep learning segmentation algorithms in the radiation treatment of prostate 

cancer, including issues related to data quality, model generalizability, and clinical integration. 

By addressing these challenges and providing insights into potential patterns and solutions for 

irradiation of target structures, this research aims to provide a framework for facilitating the 

adoption of deep learning-based image segmentation techniques in routine clinical practice for 

prostate cancer, ultimately improving the quality and precision of cancer treatment delivery. 
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CHAPTER 2: CENTRAL HYPOTHESIS AND SPECIFIC AIMS 
 

Central Hypothesis: 

Using DL algorithms coupled with Knowledge-Based Planning approaches, we 

hypothesize that we can establish a flexible end-to-end prostate cancer treatment pipeline for a 

wide range of clinical treatment scenarios with a 90% clinical acceptability pass rate. 

Specific Aim 1: 

Aim: Development of a deep learning auto-contouring workflow for prostate 

radiotherapy using simulation CT imaging 

Hypothesis: We hypothesize that deep learning segmentation models can delineate 

prostate target structures to 90% clinical acceptability with no more than minor edits. 

The work towards Aim 1 is presented in Chapter 3: Automated Contouring System for 

prostate cancer using deep learning frameworks. 

Specific Aim 2: 

Aim: End-to-end evaluation of knowledge-based planning models for planning intact, 

postoperative, and pelvic lymph node prostate treatment scenarios 

Hypothesis: We hypothesize that knowledge-based planning models can provide full 

target coverage for a breadth of prostate treatment scenarios while meeting 90% of clinical 

dose constraints for clinical acceptability with no more than minor edits 

The work towards Aim 2 is presented in Chapter 4: Automated Knowledge-based 

Planning for Prostate Cancer. 
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CHAPTER 3: AUTOMATED CONTOURING SYSTEM FOR PROSTATE CANCER 

USING DEEP LEARNING FRAMEWORKS 

Introduction 

Prostate cancer remains one of the leading causes of male cancer-related death in 

developed and developing countries, with over 350,000 deaths worldwide in 2020 (Sung et al., 

2021). The effectiveness of contemporary treatment options for prostate cancer remains a top 

research priority, with increasing interest in radiotherapy outcomes (Beesley et al., 2019; Chen 

et al., 2017; Hamdy et al., 2016). After the selection of radiotherapy for prostate cancer 

treatment, treatment planning begins with the delineation of target volumes and surrounding 

normal tissues using CT images for treatment simulation. Contouring these structures is a time- 

and resource-intensive task that requires expert knowledge to produce anatomically correct 

soft tissue boundaries (Baroudi et al., 2023). Therefore, there is a vital need for a 

comprehensive contouring tool(s) that can aid physicians and dosimetrists in accurately 

delineating structures, allowing more time for plan development and optimization. 

In recent years, automated contouring of these structures with deep learning methods 

has reduced contouring time and, in some cases, improved the quality of clinical contours (Cha 

et al., 2021; Gooding et al., 2018; Vaassen et al., 2020). Building on the advantageous 

experiences of prior works, the deep learning approach implemented in this work is the nnU-

Net. nnU-Net is a state-of-the-art deep learning framework designed for the deep learning task 

of medical image segmentation. nnU-Net is a robust segmentation solution for various 

anatomical structures and abnormalities in medical images such as MR and CT (Isensee et al., 

2021).  

The deep learning architecture that serves as the basis for nnU-Nets image 

segmentation is the popular convolution neural network (CNN) design of the U-Net. However, 

nnU-Net provides additional enhancements that improve segmentation accuracy and efficiency. 

These enhancements in architecture and approach allow it to handle unique challenges related 

to medical imaging data, which include limited annotated samples, class imbalance, and high 
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inter-patient variability (Isensee et al., 2021). The core components of nnU-Net are the 

encoder-decoder architecture, skip connections, and automated pre- and post-processing 

workflow.  

The encoder-decoder architecture is the downward and upward paths of the U-Net. The 

encoder (downward path) gradually reduces the spatial dimensions of the input image while 

increasing the number of feature maps, capturing hierarchical representations of the input data. 

The decoder (upward path) then up-samples these features to produce a segmentation map 

with the exact spatial dimensions as the input image (Comelli et al., 2021; Yu et al., 2022). Skip 

connections enable the network to access low-level and high-level features at upward path 

points in the model, facilitating more precise segmentation. These connections preserve the 

spatial information learned during the dimensionality reduction of unique information in the 

encoder to prevent the learned weights from input image data from being lost, solving the 

vanishing gradient problem (Mohammadi et al., 2021). 

The pre-and post-processing workflows of nnUnet are centered around extracting 

domain knowledge from biomedical data. Domain knowledge is the general background 

knowledge of the data or environment to which the data science methods are applied. It 

involves analyzing and interpreting the relevant information and features present within the 

data to enhance predictions. nnU-Net separates this data into three parameter groups: fixed, 

rule-based, and empirical parameters. The first are fixed parameters, templates from state-of-

the-art deep learning model architectures that have proven to work well for various 

segmentation tasks. The next are rule-based parameters, which establish unique features of 

your dataset and then formulate the dependencies to process your data for training. To handle 

object size and shape variations within biomedical imaging data, nnU-Net creates a "dataset 

fingerprint." This fingerprint consists of non-zero region cropping to evaluate image size, image 

spacing, number of classes, and intensity values within image and label data. The network can 

effectively segment structures of different scales by incorporating multiple input data 

resolutions through spatial resampling. The default resampling technique in nnU-Net is third-
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order spline interpolation, which also performs linear or nearest-neighbor interpolation (Isensee 

et al., 2021). Additionally, intensity normalization and data augmentation are employed to 

ensure consistent inputs and increase the diversity of training data to improve the segmentation 

of unseen input images. Finally, empirical parameters refer to selecting the best-trained model 

and post-processing the results for optimal segmentation. For post-processing, connected 

component analysis isolates individual regions within the segmentation mask to separate 

overlapping structures. Morphological operations such as dilation, erosion, and smoothing are 

also explored on the final segmentation mask to remove minor artifacts and irregularities in the 

segmentation mask (Isensee et al., 2021). 

We have recently demonstrated that deep learning models can reduce treatment 

planning times by up to 26% compared to manual segmentation (Rhee et al., 2020). Similar 

model-focused studies have demonstrated that deep learning-based methods can segment 

tumor volumes and normal tissues with approximately 90% or greater similarity to manually 

segmented regions by radiation oncologists (Cha et al., 2021; Duan et al., 2022; Kazemifar et 

al., 2018; Pan et al., 2019). Therefore, it seems likely that advanced deep learning algorithms 

can delineate tissues on CT images to model delivered radiation accurately. This study 

proposes that models developed from data trained in the nnU-Net framework can contour 

prostate treatment planning structures. This auto-segmentation stage is the first stage of the 

proposed end-to-end treatment pipeline. The inputs for this pipeline are a simulation CT and a 

radiotherapy prescription with details on the dose and targets to irradiate with desired margins. 

For auto-segmentation, the input is the simulation CT with information on targets to aid in post-

processing only. 

Methods 

Patient Dataset 

Data for developing the automated treatment pipeline was obtained from institutional 

Pinnacle and RayStation databases. A dataset of 1069 patients’ simulation CTs, clinical 
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contours, IMRT, and VMAT plans were extracted to represent a breadth of clinical treatment 

scenarios for prostate cancer, including definitive (intact) prostate, post-operative (postop) 

prostate, and lymph node-involved treatment cases. These cases include treatment devices 

(i.e., rectal balloons and space-oar hydrogels) and imaging artifacts due to metal hip implants. 

The extensive collection of prostate cases was selected to enhance the model’s training and 

make it more robust to unseen cases. 

The collected data containing treated patients between 2010 and 2023 was evaluated 

to ensure that CTs, manual contours, and VMAT treatment plans were clinically approved and 

used in treatment. Each contour selected for training was assessed individually for observance 

of guidelines for model training with supervision from a radiation oncologist (see Table 1). 

Selected clinical contours include the Prostate, Prostate Bed, Seminal Vesicles (SV), SV-fossa, 

Rectum, Sigmoid, Bladder, Femoral Heads, Hydrogel Spacer, and Rectal Balloon. 

 

Organization Structures Reference 

ESTRO Intact Prostate ESTRO ACROP consensus guideline on CT- and 
MRI-based target volume delineation for primary 
radiation therapy of localized prostate cancer (Dal 
Pra et al., 2023) 

RTOG Post-operative Prostate, Normal 
Pelvic Tissues 

• Development of RTOG consensus 
guidelines for the definition of the clinical target 
volume for postoperative conformal radiation 
therapy for prostate cancer (Michalski et al., 2010) 

• Pelvic Normal Tissue Contouring 
Guidelines for Radiation Therapy: A Radiation 
Therapy Oncology Group Consensus Panel Atlas 
(Gay et al., 2012) 

NRG Pelvic Lymph Nodes NRG Oncology Updated International Consensus 
Atlas on Pelvic Lymph Node Volumes for Intact and 
Postoperative Prostate Cancer (Hall et al., 2021) 

Table 1 Summary of contouring guidelines observed to curate ground truth data for deep learning model 
development. 

Some structures necessary for the development of our models were either not 

contoured for treatment or exhibited high inter-user variability. These include PenileBulb, Bowel 

Bag, Lymph Node CTV, Cauda-Equina, and Spinal Cord. For PenileBulb, Lymph Node CTV, 

Cauda-Equina, and Spinal cord, these contours were retrospectively manually contoured by 

trained research assistants for 100 patients following RTOG Consensus Contouring Guidelines 

(Gay et al., 2012). Two radiation oncologists reviewed these structures iteratively until they 
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were correctly contoured according to guidelines. In addition to Lymph Node CTV, the aortic 

bifurcation, the junction where the abdominal aorta bifurcates into the left and right common 

iliac arteries, was contoured to ensure the appropriate superior termination of the Lymph Node 

CTV according to NRG guidelines. The bifurcation was contoured for 15 slices: five below the 

bifurcation point and ten above. The bifurcation point was set where two distinct ellipses were 

first visible on CT (see Figure 1). The Lymph Node CTV was contoured three more slices 

above the superior slice of the aortic bifurcation to ensure that total contour volume at and 

above the end of the bifurcation was predicted at the superior boundary. For the Bowel Bag 

and kidneys, contours were automatically generated on the final testing patient sets from deep-

learning models developed by our group (Rigaud et al., 2021; Salazar et al., 2024). 

 

Figure 1 Illustration of contouring the aortic bifurcation as the support structure for lymph node CTV 
contouring according to NRG guidelines. 
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Contour Model Development 

Preparation of data for contour model training 

Five models were developed for the segmentation of all prostate structures. Clinical and 

non-clinical contour data was separated into specific segmentation map groups for model 

training: targets, organs-at-risk (OARs), nodal contours, spinal contours, and devices. Intact 

and postoperative targets (e.g., prostate and seminal vesicles) were combined onto a single 

segmentation map for multi-class prediction. OARs routinely contoured for prostate treatment 

planning, including rectum with a rectal balloon, were combined into another segmentation map 

for multi-class prediction. The same was performed for nodal contours (e.g., Lymph Node CTV 

and aortic bifurcation) and spinal contours (Cauda-Equina and Spinal Cord). The device 

segmentation map consists of hydrogel spacer contours only for single-class prediction. If 

ground truth structures overlapped, a priority order was used to prioritize structures with 

stringent dose constraints over less stringent ones. The order is prostate, seminal vesicles, 

rectum, sigmoid, bladder, lymph node CTV, femoral heads, penile bulb, bowel bag, cauda 

equina, spinal cord, and kidneys from most stringent to least stringent dose constraints. All 

images were resampled to 1.17mm x 1.17mm pixel size and 2.5 mm slice thickness. Contour 

data was split into training, fine-tuning, and testing datasets in an 80:10:10 percent split. A 

complete list of contoured structures can be seen in Table 2. 

New Models and Generated Contours Adopted Model 
Contours 

Pelvic Target 
Structures 

Nodal 
Structures 

Pelvic OARs Spinal OARs Devices Adopted OARs 

Prostate 
Prostate Bed 
Seminal 
Vesicles 
SV-Fossa 
 

Pelvic 
Lymph 
Node CTV 
Aortic 
Bifurcation 

Rectum 
Rectal 
Balloon 
Sigmoid 
Bladder 
Penile Bulb 
 

Cauda 
Equina 
Spinal cord 

Hydrogel 
Spacer 
 

Bowel Bag 
(Salazar et al., 
2024) 
Kidneys (Rigaud 
et al., 2021) 

Table 2 Target, organs-at-risk (OARs), and other structures automatically contoured within our treatment 
pipeline, separated by structures from newly developed models and structures adopted from established models. 
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Model Training 

For each of the five groups of labeled data prepared above, the adaptive nnU-Net 

framework (Isensee et al., 2021) was used to tailor segmentation models based on 3D U-Net 

architecture to segment prostate treatment structures. An example architecture of a customized 

Un-Net architecture can be seen in Figure 2. The loss function for each model was a 

combination of Dice Similarity Coefficient (DSC) loss and cross-entropy loss. Training and 

testing were done on NVIDIA Tesla V100 GPUs with 32 GB VRAM. Each model was also 

trained for 1000 epochs. 

 

Figure 2 U-Net architecture was customized for the segmentation of structures by the nnU-Net Framework 
based on available training data. 

Out of all the patients' simulation CT scans separated into the training dataset, not all 

structure labels were drawn on that CT. To obtain a complete set of labeled data from which to 

train our models, all available clinical contours for specific regions of interest (ROIs) were first 

used to train treatment case-specific models. Each model was trained using the nnU-Net 

framework for a particular ROI depending on the treatment scenario in which the contour would 

be present. The circumscribed features for a given contour and treatment scenario allow the 

model to learn from these limited, more specific delineations. The predictions from models for 
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similar treatment cases but distinct segmentation features were summed to improve the 

generated contours. The deep-learning contour predictions from these models are then 

combined to create a complete structure set for each training patient in the training dataset. 

Final targets and OAR models were trained using this deep-learning contour dataset. A Model 

ID is included as a reference to model outputs summed together for a given treatment scenario 

to generate a deep learning prediction dataset for the final model (see Table 3 and Figure 3). A 

paired t-test was performed to examine the difference between the mean geometric metric 

performance of contours generated from deep learning predictions and contours generated 

from ground truth clinical data. This was done to support that contours generated from deep 

learning models did not vary significantly from the predictions of conventionally trained models. 

Individual, ensemble and the proposed multi-class model were compared for metric 

performance on Dice-Similarity-Coefficient (DSC) and 95% Hausdorff Distance (HD95) with an 

alpha level of significance set at 0.05. 

Region of 
Interest 

Model ID Model Description Treatment Case 

Prostate 1 Prostate (intact) Only treatments with prostate 
intact 

2 Prostate (postop) Only prostatectomy cases 

3 Prostate (intact and 
postop) 

All treatment cases 

4 Prostate (with spacer) Only treatments with hydrogel 
spacer 

Seminal Vesicle 5 Seminal Vesicle (total 
intact) 

Only treatments with intact 
Seminal Vesicles (proximal SV + 
distal SV) 

6 Seminal Vesicle Fossa Only prostatectomy cases 

7 Seminal Vesicle (intact and 
postop) 

All treatment cases 

Rectum 8 Rectum (with and without 
balloon) 

All treatment cases with and 
without rectal balloon present 

9 Rectum (ischial tuberosity) All treatment cases with rectum 
extending to or below the ischial 
tuberosity 

Sigmoid 10 Sigmoid (no balloon) All treatments with sigmoid where 
no rectal balloon was used 

11 Sigmoid (with balloon) All treatments with sigmoid where 
rectal balloon was used 

12 Sigmoid (with and without 
balloon) 

All treatments, regardless of the 
use of a rectal balloon 
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Bladder 13 Bladder All treatment cases 

Femoral Heads 14 Femoral Heads All treatment cases, including the 
presence of metal hip implants 

Penile Bulb 15 Penile Bulb All treatment cases 
Table 3 Summary of contouring models developed on a treatment-case basis. 

Only one model was developed for these structure groups: nodal, spinal, and device 

structures. This is because all contours were present for all training patients after manual 

contouring was approved. The nnU-Net framework was used to tailor 3D full-resolution U-Nets 

to our dataset for five new nnU-Net models. Two existing models developed for generating 

contours for bowel bag and kidneys were incorporated to include a complete set of contours for 

prostate treatments (a total of 7 models).  

 

Figure 3 Workflow of combining model predictions from clinical data to create a complete training contour 
set of deep learning predictions. From the targets and OARs deep learning prediction dataset, the final two targets 
and OAR nnU-Net models are trained to contour respective structures. The numbering on the left-hand side 
corresponds to the Model ID in Table 3. 

Post Processing 

Additional contour corrections were necessary to combine all the predicted structures 

from various models. The first correction of contours needed was the overlap between 
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predicted targets and OARs. The order of overlap correction was the same as for pre-

processing: prostate, seminal vesicles, rectum, sigmoid, bladder, lymph node CTV, femoral 

heads, penile bulb, bowel bag, cauda equina, spinal cord, and kidneys. For continuous 

structures such as Prostate Bed/SV-fossa, Rectum/Sigmoid, and Cauda Equina/Spinal Cord), 

the boundaries required adjustment to avoid multiple predictions on the same slice axially (see 

Figure 2). Additionally, a 1.5mm and 1mm anterior and lateral reduction was necessary for the 

prostate to avoid contouring into the neurovascular bundle surrounding the prostate. For the 

prostate bed, a similar anterior and superior 1mm and 2mm reduction was required to prevent 

excessive contouring into the bladder. The middle slice with overlap was chosen for each 

structure pair as the boundary between ROIs. As the total seminal vesicle volume was 

contoured, the seminal vesicles were truncated based on the desired treatment extent for intact 

treatment cases. For example, if the physician indicates they want to treat the proximal 1.5cm, 

the seminal vesicles are truncated at the 1.5cm point. 

 

Figure 4 Boundary correction was performed on generated segmentations of model predictions. An 
example of an auto-contoured rectum and sigmoid prediction being reset to the median overlapping slice from the 
contour boundaries' most inferior and superior borders. 
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Contour Evaluation 

The final set of model prediction contours was evaluated on the held-out test dataset of 

100 patients. The performance of model-generated contours was evaluated using Dice-

Similarity-Coefficient (DSC), Surface DSC, 95% Hausdorff Distance (HD95), and mean surface 

distance (MSD). From the test dataset, 65 patients were selected for physician review of 

contours (45 and 20 patients without and with lymph node involvement, respectively). Four 

radiation oncologists from two institutions and two countries visually evaluated and scored the 

auto-contours on a five-point Likert scale shown in Table 4. 

Score Acceptability Description 

5 Acceptable; use as is Clinically acceptable, could be used for treatment 
without change 

4 Acceptable, minor edits that 
are not necessary 

Stylistic differences are not clinically significant; 
the current contours/plans are acceptable. 

3 Unacceptable, minor edits 
that are necessary 

Clinically significant edits, but it is more efficient 
to edit the automatically generated contours/plans 
than to start from scratch. 

2 Unacceptable, major edits Edits that are required to ensure appropriate 
treatment and sufficiently significant that the user 
would prefer to start from scratch 

1 Unacceptable, unusable Automatically generated contours/plans are so 
bad that they are unusable (i.e., wrong body area, 
outside confines of the body, etc.) 

Table 4 The table details the 5-point scale for evaluating the quality of generated auto-contours and auto-

plans. 

Results 

Of the final five models trained for this auto-contouring stage of our end-to-end pipeline 

(see Table 2), the multi-class models for pelvic target and OAR structures were compared 

against individual and ensemble models for statistical variation in contour performance. In 

evaluating the performance of the proposed multi-class models against individual and 

ensemble models, no statistical significance was found in contour segmentation for all 

structures except for rectum contours. P-values for rectum contour predictions between the 

ensemble and the proposed multi-class model for OAR structures were 2.7𝑥10−11 and 

3.3𝑥10−11 for DSC and HD95, respectively. An example of the distribution of scores between 

examined model classes for DSC is presented in Figure 5. Upon visually inspecting these 
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contours, the variations were within the transition zone between the rectum and sigmoid. As 

this is a loosely defined transition point in guidelines between continuous structures based on 

observed curvature, it was decided to proceed with the proposed multi-class OAR model to 

physician review where this statistical difference in contour predictions could be qualified. 

 

Figure 5 Boxplot of the distribution in DSC scores between predicted structures from individual, ensemble, 
and the proposed multi-class segmentation models 

A summary of the auto-contouring quantitative evaluation for all models is provided in 

Table 5 for overlap and distance metrics for the 100 test patients in the holdout set. DSC 

boxplots for all contoured structures are shown in Figure 3. For target structures, prostate, 

prostate bed, and lymph node CTV achieved the highest mean DSC values at 0.82±0.08, 

0.74±0.07, and 0.78±0.06, respectively. More significant variability in auto-segmentation 

performance was seen in seminal vesicle and SV-Fossa with mean DSC of 0.61±0.17 and 

0.58±0.11, respectively. Variability was attributed to the complex orientations of adjacent 

organs to seminal vesicles and SV-Fossa (i.e., bladder, rectum, and sigmoid). For distance 

metrics, prostate, and prostate bed were closely in agreement with HD95/MSD of 

7.7±2.8/2.7±1.0 and 7.8±2.9/2.8±1.2 respectively. Seminal vesicles and SV-Fossa exhibited 

greater distances of 8.5±5.8/2.6±2.0 and 8.4±4.0/3.1±1.3. Lymph node CTV presented the 

greatest target HD95 and MSD of 17.2±20.7 and 3.5±2.7, respectively. 
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Most structures achieved a mean DSC value of 0.8 or greater for normal tissue 

structures, ranging from 0.85 to 0.98. The bladder, kidneys, and femoral heads achieved the 

highest mean DSC of 0.97±0.02, 0.98±0.01, and 0.96±0.02. For surface DSC, Bladder, 

Kidneys, and femoral heads, they achieved the highest mean surface DSC of 0.95±0.05, 

0.94±0.03 and 0.98±0.01. Structures achieving mean DSC values less than 0.8 include 

Sigmoid, Penile Bulb, and Bowel Bag with mean DSC of 0.63±0.12, 0.59±0.12, and 0.68±0.25, 

respectively. For surface DSC, Sigmoid, Penile Bulb, and Bowel Bag achieved the lowest mean 

surface DSC values of 0.78±0.13, 0.50±0.12 and 0.28±.18 respectively. For distance metrics, 

Sigmoid and Bowel Bag achieved the greatest mean HD95/MSD of 27.4±16.2/5.8±4.1 and 

78.4±56.3/21.5±16.6 respectively. 

 

 DSC Surface-
DSC 

HD95 (mm) MSD (mm) 

Mean SD Mean SD Mean SD Mean SD 
Prostate 0.82 0.08 0.63 0.18 7.7 2.8 2.7 1.0 

Seminal Vesicle 0.61 0.17 0.62 0.18 8.5 5.8 2.6 2.0 

Figure 6 Box and whisker plots of Dice similarity coefficient (DSC) between ground-truth and 
automatically generated contours. 
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Prostate Bed 0.74 0.07 0.46 0.11 7.8 2.9 2.8 1.2 

SV-Fossa 0.58 0.11 0.41 0.11 8.4 4.0 3.1 1.3 

Lymph Node CTV 0.78 0.06 0.62 0.8 17.2 20.7 3.5 2.7 

Rectum 0.85 0.07 0.82 0.09 10.5 8.4 2.0 1.5 

Sigmoid 0.63 0.12 0.78 0.13 27.4 16.2 5.8 4.1 

Bladder 0.97 0.02 0.95 0.05 2.8 6.0 0.5 1.0 

PenileBulb 0.59 0.12 0.50 0.12 9.4 3.5 3.1 1.1 

Femoral-Heads 0.96 0.02 0.94 0.03 5.6 5.1 0.8 0.6 

Spinal Cord 0.89 0.08 0.90 0.09 15.8 16.9 2.5 2.7 

Cauda Equina 0.86 0.10 0.86 0.11 15.1 12.6 2.7 2.2 

Spacer 0.85 0.05 0.92 0.07 3.1 2.2 0.8 0.4 

Bowel Bag 0.68 0.25 0.38 0.18 78.4 56.3 21.5 16.6 

Kidneys 0.98 0.01 0.98 0.01 0.4 0.7 0.1 0.1 

Table 5 Mean Dice similarity coefficient (DSC), surface DSC, 95% Hausdorff Distance (HD95), and mean 
surface distance (MSD) between ground truth and prediction results for our auto-contouring models. 

Figures 4 and 5 show the results of the physicians’ qualitative evaluations of auto-

segmented prostate structures. The contours were separated into two groups to mirror 

physician review of plans generated from the same set of reviewed contours (i.e., one set of 45 

patient cases for prostate without nodal involvement and another set of 20 for prostate cases 

with nodal involvement).  
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Figure 7 Qualitative review of 45 sets of patient contours on CT by three radiation oncologists for planning 
structures of intact and postop treatment cases. Each physician reviewed 15 intact and postop cases in total. 

 

Figure 8 Qualitative review of 20 sets of patient contours on CT by two radiation oncologists for planning 
structures of intact and postop treatment cases. Each physician reviewed ten intact and postop cases in total. 
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There was a fair agreement between physician reviewers for contours reviewed in the 

set of 45 patients. For target structures, physician 1 scored 90% of intact structures and 40% of 

postoperative structures a 4 or 5. Physician 2 scored 88% of intact structures and 100% of 

postop structures a four or a five. Physician 3 scores 67% of intact and postop target structures 

a four or greater. For the rectum, physician 1 scored 73% of contours a 4 or 5. Physicians 2 

and 3 both scored all rectal contours a 4 or 5. For sigmoid, physicians 1, 2, and 3 scored their 

respective evaluated contours a 4 or 5 for 80%, 87%, and 93% of cases. Physicians 2 and 3 

scored all bladder and penile bulb contours a 4 or 5. Physician 1 scored bladder and penile 

bulb contours a 4 or 5 at 87% and 93% of the time, respectively. All physicians scored all 

Femoral Head contours a 5. 

 

Figure 9 Visual comparison of qualitative physician scoring for predicted contours (cyan) to clinical ground 
truth contours (magenta) for organs at risk: rectum, sigmoid, and bladder. 
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Figure 10 Visual comparison of qualitative physician scoring for predicted contours (cyan) to clinical ground 
truth contours (magenta) for target structures: prostate, seminal vesicles, prostate bed, SV-fossa, and lymph node 
CTV. 

For contours reviewed in the set of 20 patients, there was a fair agreement between 

physician scores for OARs and a more varied agreement for targets. For example, for 

physician 1, the prostate contour reviewed received a score of 3, while the corresponding 

seminal vesicle structure received a 4. More prostate bed and SV contours were present in this 

contour set. Physician 1 scored all prostate bed contours a three, and only 56% of SV-Fossa’s 
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scored a 4 or 5. For Physician 2, all prostate and seminal vesicles received a score of 4 or 5. 

Prostate bed and SV-Fossa contours scored 4 or 5, 43% and 86% of the time, respectively. 

Both physicians scored Lymph node CTVs as 4 or 5 for at least 80% of cases. The majority of 

normal tissue structures received either a 4 or 5 for both physicians. Physician 1 scored one 

bladder contour a three due to incomplete contouring of the bladder neck. 

Upon evaluation of the predicted contours that were reviewed to the ground truth clinical 

contours, differences between lower and higher-scoring contours were made more evident (see 

Figure 9). For normal tissues, the differences in scoring occurred at the superior and inferior 

borders. For the rectum, scores of 3 were attributed to over-contouring inferiorly at the level of 

the anal canal. 4s were mainly attributed to not contouring the superior boundary high enough 

at the point of the greater curvature of the GI tract. And scores of 5 were able to match these 

boundaries appropriately. For sigmoid, we see a similar pattern in scoring by the extent of 

boundaries superiorly. 3s were scored because insufficient sigmoid was contoured superiorly 

or laterally compared to ground truth. 4s were closer to contouring to the ascending portion of 

the bowel. 5s could reach and, in some cases, contour more than what was contoured 

clinically. Bladder scoring centered around the extent of contouring the bladder neck close to 

the prostate. 3s under contoured this region, segmenting the water within the bladder but not 

the complete bladder; 4s contoured more of the bladder neck, and 5s could contour the bladder 

completely. 

Scoring in target structures depended primarily on whether the target structure was over 

or under-predicted. For seminal vesicles, 3s were attributed to under contouring, 4s were often 

contours that were overextended, contouring more than seminal vesicles in the surrounding 

(e.g., fat), and 5s were able to contour just the seminal vesicles for the entirety of their length. 

Prostate 3s were attributed to over-contouring at the middle and apex of the prostate into the 

neurovascular bundle surrounding the prostate, 4s were slightly contoured, and 5s could 

adhere to the prostate's visible shape without over-contouring. For postop targets, SV fossa 

scores were due to contouring, and prostate bed scores were primarily due to over-contouring 
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into the surrounding obturator and levator ani muscles from scores of 3 to 5, not over-

contouring, respectively. For lymph node CTV, lower scores of 3 were due to poor coverage 

around the iliac blood vessels (see Figure 10). Contours with higher scores could maintain 

proper margins throughout the body of the lymph node regions. 

Discussion 

This study aimed to evaluate the ability of trained deep-learning models to delineate 

both intact and postoperative structures for use in the clinic. Quantitative comparisons for mean 

DSC and HD95 values to literature are listed in Table 6. As postoperative CTV for prostate may 

include resected seminal vesicle beds at other institutions, no direct comparison for SV fossa 

was found for auto-contouring methods. A similar scenario arises for Cauda-Equina, a spinal 

cord substructure often included as a single contour. For the set of 45 patients, there was more 

agreement for target structures between physicians 1 and 2 than for those reviewed by 

physician 3. For normal tissues, there was more agreement between physicians 2 and 3. For 

the set of 20 patients, there was a more varied response to targets and normal tissues. The 

inter-observer variability in targets and OARs is similar to studies at multiple centers evaluating 

three or more physician responses (Kiljunen et al., 2020). A single institution study found that 

65% of both prostate targets and OARs (n=43) were acceptable with no more than minor edits 

using a 3-point scale (Cha et al., 2021). The choice of the Likert scale used to review contours 

was based on established use in literature for use in automated contouring approaches 

(Baroudi et al., 2023; Yu et al., 2022). The advantage of a distinction in minor edits with more 

categories for scoring is in differentiating between contours that are readily acceptable from 

contours that, although they contain minor edits, would benefit from additional review and 

redress before proceeding to plan. No physician found that the presented contours needed 

more than minor edits. When asked about the overall prediction quality, all physicians' 

feedback was positive, and they were open to future use of these models once they had 

improved. 
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Structure Auto-
Contour 
Mean 
DSC 

Literature 
Mean 
DSC 

Auto-
Contour 
Mean HD95 
(mm) 

Literature 
Mean HD95 
(mm) 

Reference 

Prostate 0.82 0.82 7.7 6.1 (Kiljunen et al., 2020) 

  0.87  *4.3 (Oktay et al., 2020) 

  0.87  9.9 (Martínez et al., 2014) 

  0.86  4.6 (Zabel et al., 2021) 

Seminal 

Vesicles 

0.73 0.72 7.5 7.1 (Kiljunen et al., 2020) 

  0.8  *3.7 (Oktay et al., 2020) 

Prostate 

Bed 

0.74 0.86 7.8  (Balagopal et al., 2018) 

  0.65   (Hwee et al., 2011) 

SV-Fossa 0.58 ** 8.4 **  

Lymph 

Node CTV 

0.78 0.8 17.2 14.7 (Kiljunen et al., 2020) 

Rectum 0.85 0.84 10.5 11.4 (Kiljunen et al., 2020) 

  0.82  13.52 (Martínez et al., 2014) 

  0.84  10.7 (Zabel et al., 2021) 

  0.77  6.0  

Bladder 0.97 0.93 2.8 3.3 (Kiljunen et al., 2020) 

  0.95   (Balagopal et al., 2018) 

  0.89  25.0 (Martínez et al., 2014) 

  0.97  2.4 (Zabel et al., 2021) 

Femoral 

Heads 

0.96 0.69 5.6 24.8 (Kiljunen et al., 2020) 

  0.96   (Balagopal et al., 2018) 

  0.98  *1.2 (Oktay et al., 2020) 

  0.89  1.4 (Liu et al., 2020) 

Penile Bulb 0.59 0.51 9.4 7.7 (Kiljunen et al., 2020) 

  0.77   (Balagopal et al., 2018) 

  0.6   (Hwee et al., 2011) 

Sigmoid 0.63 0.66 27.4 15.3 (Kiljunen et al., 2020) 

Spinal 

Cord  

0.89 0.83 15.8 5.01 (Liu et al., 2020) 
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Cauda-

Equina 

0.86 ** 15.1 **  

Bowel Bag 0.68 0.82 78.4 5.6 (Liu et al., 2020) 

Spacer 0.85 0.84 3.1  (Wang et al., 2023) 

Table 6 Comparison of deep learning model segmentation performance to other CT-based contour 
prediction models in the literature. * Reference reported Hausdorff Distance rather than HD95; ** Structure is not 

explicitly segmented or is considered part of a larger structure. 

During the contour review, several minor edit recommendations proved to be recurring 

despite no physician reviewing the same case. For target structures, both prostate and prostate 

bed suffered from over-contouring. For the prostate, it was most notable at the base and 

throughout the middle of the prostate. The contours would overextend to contour part of the 

neurovascular bundle surrounding the prostate. This is difficult to overcome on CT as there is 

limited soft tissue contrast to differentiate the tissue differences. The presence of metal hip 

artifacts within our test cases made this distinction of soft tissues problematic, especially in 

cases that scored 3 for both the prostate and bladder. For the prostate bed, this occurred at the 

inferior portion of the contour below the anastomosis, following down the obturator and levator 

ani muscles, which can be challenging to differentiate on CT, depending on quality. The 

prostate bed auto-contour would contour parts of this muscle inside the CTV, which would not 

contain unresected tumor cells. Low soft tissue contrast was a recurring issue for cases scoring 

a 3 for both intact and postoperative prostate. Some physicians deemed it adequate to include 

some parts of these muscles within the CTV volume. However, physicians noted it is better 

practice to contour on the innermost boundary of visible pelvic floor muscles or to adjust PTV 

margins to account for greater uncertainty in the prostate bed contour where appropriate. All 

reviewers noted potential boundary improvements to the prostate CTV extension into adjacent 

structures for at least one patient within the review. 

Improving coverage of internal iliac vessels for lymph node CTV proved to be a minor 

but necessary edit. However, the model suffered from the partial volume effect of these vessels 

caused by proximity to the bowel. Additional information, such as partial contours of these 

blood vessels, would be needed to ensure the model can adequately capture these structures 
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without confusion with the surrounding bowel. An example of a partial contour would be the 

aortic bifurcation contour used in our methods to mark the superior boundary of the Lymph 

nodes according to guidelines. The added information of this structure significantly improved 

the model’s superior coverage.  

For normal tissue structures, the most consistent recommendation was to improve the 

rectum and sigmoid boundary, most notably when the rectum ends and the sigmoid starts 

moving upward into the abdomen. This boundary is defined in guidelines as when the GI tract 

begins to curve upward (Gay et al., 2012). Reference bony anatomy is around the level of S3 

or S2. However, within available clinical data, there is significant variation at which this point is 

defined, resulting in the model often setting the boundary lower for the rectum as the region of 

curvature varies from patient to patient. This variability inevitably results in the model’s difficulty 

in setting the rectum boundary higher at the point where the most significant curvature between 

the rectum and sigmoid begins rather than in the middle or end of the curved section. Even the 

reference bony anatomy of the sacral vertebra is limited depending on sacral curvature and 

pelvic tilt. Excessive curvature and gas presented within the sigmoid and rectum led the model 

to over-contour sigmoid and under-contour rectum in cases scoring a three among physicians. 

Similar difficulties in rectum contouring have been observed for inconsistencies in large 

datasets (Elisabeth Olsson et al., 2022). 

Conclusion 

The study proposed, implemented, and tested an automated solution to contour 

prostate radiotherapy treatment structures. The study demonstrated the clinical acceptability of 

intact and postoperative structures across two cohorts, with most physicians scoring treatment 

targets and normal tissue structures with no more than minor edits. Limiting cases of low soft 

tissue contrast or contents in the bowel are areas of model improvement to reach the desired 

threshold of clinical acceptability. Each model can segment a breadth of treatment structures 
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with only one simulation CT as input. This study demonstrates the potential for automated 

contouring of prostate structures for expedited delineation in preparation for planning. 
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CHAPTER 4: AUTOMATED KNOWLEDGE-BASED PLANNING FOR PROSTATE 

CANCER 

Introduction 

For cancer treatment, the optimization of radiation delivered in treatment planning holds 

paramount importance. Prostate cancer is one of the most prevalent malignancies affecting 

men worldwide (Sung et al., 2021), demands precise and personalized approaches to meet 

optimal treatment outcomes while minimizing adverse effects on healthy organs and tissues. 

For newly diagnosed prostate cancer cases, initial management of the disease ranges from 

active surveillance for low-risk patients to definitive management with surgical resection of the 

prostate and seminal vesicles (prostatectomy) or definitive radiation therapy (RT). While other 

forms of treatments such as surgery, hormonal therapy, chemotherapy, and internal radiation in 

the form of brachytherapy are potential avenues for treatment, only external beam radiotherapy 

(EBRT) in the form of photon treatments will be discussed and investigated (“ NCCN 

guidelines: prostate cancer (version 3.2024).,”). 

Volumetric modulated arc therapy (VMAT) is now a standard treatment technique used 

for the treatment of prostate cancer, representing a significant advancement in radiation 

oncology, offering enhanced dose conformity and sparing of organs at risk compared to 

conventional conformal approaches (Ayuthaya et al., 2023; Orton et al., 2008). VMAT planning 

carries a disadvantage in that the optimization process is time-consuming and requires the 

iterative task of finding the desired target and OAR treatment criteria. Furthermore, an 

achievable dose-volume histogram is unknown from the start, and optimization parameters are 

often population-based dose constraints found in previous literature, such as the Quantitative 

Analyses of Normal Tissue Effects in the Clinic (Marks et al., 2010). Automated knowledge-

based planning (KBP) is an increasingly prevalent strategy to expedite and create uniformity in 

treatment planning, leveraging computational algorithms and large datasets to streamline the 

treatment planning process (Ayuthaya et al., 2023). 
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KBP is a technique that leverages the collective information of previous treatment plans 

to inform and guide the optimization of new plans. This approach utilizes machine learning 

algorithms to analyze historical treatment data, including dose-volume histogram (DVH) 

parameters, patient anatomy, and treatment goals, to generate predictive models (van Gysen 

et al., 2020). These models capture the relationships between various planning parameters and 

their impact on treatment plan quality. Planning features include patient anatomical features 

and their relationship to OAR dose-sparing (Yuan et al., 2012). RapidPlan is a commercial 

knowledge-based planning (KBP) algorithm designed by Varian Medical Systems to streamline 

the planning process and enhance treatment outcomes. The knowledge base and optimization 

engine serve as the two key components of this KBP system. The knowledge base is the 

repository of historical treatment data encompassing a wide range of patient cases and 

corresponding treatment plans. Studies continue to study the importance of this knowledge 

base, including the intra- and extra-institutional sources from which the prior treatment data 

originates for effective and efficient planning (Fogliata et al., 2019; Kaderka et al., 2021; Kubo 

et al., 2019; Reid, 2019; Zhu et al., 2011). This knowledge base serves as the foundation of the 

RapidPlans Dose volume Histogram (DVH) estimation. DVHs represent the distribution of 

radiation dose delivered throughout the treatment volume and are essential for evaluating the 

quality of a plan by ensuring that dose constraints are achieved. DVH estimation first requires 

the selection of relevant anatomical structures, which include target volume(s) to be treated 

and normal tissues to be spared (Moore et al., 2015, 2011; Wu et al., 2009). From the selected 

structures, statistical regression techniques are used to generate a predictive model (e.g., 

linear regression) that correlates the geometric and dosimetric features of the patient’s 

anatomy with the estimated DVHs. This model accounts for factors such as tumor size, 

location, proximity to critical structures, and historical treatment outcomes obtained from the 

knowledge base. The predictive DVH model is then used to guide the optimization engine by 

using the DVH to adjust treatment parameters to achieve the desired dose-volume goals 

iteratively (Li et al., 2021; Zarepisheh et al., 2014). This iterative process enables RapidPlan to 
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generate high-quality treatment plans efficiently, significantly reducing the time and effort 

required for manual planning while improving plan consistency and quality. 

Knowledge-based planning systems like RapidPlan represent a transformative 

approach to radiotherapy planning, leveraging historical treatment data and DVH estimation to 

optimize treatment plans effectively. RapidPlan enables clinicians and dosimetrists to generate 

high-quality plans tailored to each patient's unique anatomy and treatment objectives, ultimately 

improving the efficacy of treatment planning while meeting PTV coverage with comparable or 

improved OAR dose-sparing (van Gysen et al., 2020). Many institutions have begun 

implementing RapidPlan models into their clinical practice (Ge and Wu, 2019), allowing for 

reductions in optimization time independent of the planner’s skill and planning experience 

(Kubo et al., 2017). In this study, we propose using two RapidPlan models to generate VMAT 

plans for intact and postoperative targets with and without lymph node involvement. 

Methods 

VMAT plan data 

Knowledge-based planning models were separately developed for this study to achieve 

the objective of generating prostate plans. The knowledge base for these Varian RapidPlan 

models was VMAT treatment plans collected from the most recent year of our cohort (e.g., 

2022) to ensure the treatment practices were the most up-to-date in clinical practice. The two 

cohorts of treatment plans were queried for developing two RapidPlan models. Group 1 

consists of 90 intact and postop prostate plans without nodal involvement. Group 2 consists of 

37 intact/postop prostate plans with elective pelvic lymph node involvement (both node-positive 

and node-negative disease). All prostate plans were approved and delivered at a single 

institution and de-identified under a protocol approved by The University of Texas MD 

Anderson Cancer Center institutional review board. The institution in which these patients 

underwent radiotherapy has a dedicated multidisciplinary team of physicians and dosimetrists 

who specialize in the treatment of prostate cancer. Auto-plans were generated based on the 
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original physician-drawn and approved targets and normal tissue contours used during 

treatment. 

Automated Planning Strategy 

The two previously developed Varian RapidPlan models for automated treatment 

planning were used for groups 1 and 2 mentioned above. All plans for model development 

were clinical plans treated from 60 to 78Gy in 20 to 39 fractions for prostate-only cases and 

59.8 to 70Gy in 35 fractions for prostate and node cases. All treatments were planned with the 

Varian Eclipse treatment planning system (version 15.6, Varian Oncology Systems. Palo Alto, 

CA, USA). All treatment plans consist of three 360° coplanar treatment arcs with a photon 

energy of 6MV and collimator rotation angles of 10°, 90° and 350°. For prostate-only 

treatments, the treatment isocenter is set at the center of the prostate PTV. Jaws are set such 

that the entire target remains in the beam’s eye view of the gantry throughout the whole sweep 

of the arc. The treatment isocenter is set at the center of the combined prostate and lymph 

node PTV for prostate and lymph node treatments. Jaws are set such that beams of collimator 

angles 10° and 350° span the combined target PTVs with the beam of collimator angle 90° set 

to a field size of 15cm around the treatment isocenter (5cm superiorly and 10cm inferiorly). 

An automated two-step process was developed to refine the treatment. The specifics of 

this technique depend on whether the pelvic nodes are to be treated. Two successive 

optimization iterations are performed after the initial plan is generated to optimize automated 

treatment plans without nodal involvement. Isodose planning structures are generated from the 

105% and 104% isodose lines and progressively added to identify and reduce plan hotspots. 

This is performed for both intact and postop treatment plans. An isodose planning structure is 

generated from the 50.4 Gy isodose line to optimize automated treatment plans with nodal 

involvement. This structure is then used to subtract the isodose planning structure from the 

original Lymph node PTV volume. The remaining structure, which contains the under-covered 

regions of the nodal PTV, is used in an additional optimization run to enhance nodal coverage. 



33 
 

All automated treatment plans were normalized such that 98% of the high-risk PTV volume 

received 100% of the prescription dose.  

Target and 
Normal 
Tissue 
Structure 

Intact Dose Constraints Postop Dose 
Constraints 

Lymph Node Dose 
Constraints 

PTV V78Gy >= 98% 
Dose [Max] <= 84.2Gy 

V70Gy >= 98% 
Dose [Max] <= 
75.6Gy 

V70Gy >= 98% 
Dose [Max] <= 75.6Gy 

PTV Lymph 
Nodes 

  V50.4Gy >= 98% 

CTV V78Gy >= 100% V70Gy >= 100% V70Gy >= 100% 

CTV Lymph 
Nodes 

  V50.4Gy >= 100% 

Bladder V60Gy <= 40% 
V70Gy <= 20% 

V60Gy <= 40% 
V70Gy <= 20% 

V45Gy <= 45% 
V55Gy <= 25% 
V65Gy <= 15% 

Rectum V30Gy <= 80% 
V40Gy <= 60% 
V60Gy <= 40% 
V70Gy <= 20% (No 
Balloon) 
V70Gy <= 15% (Balloon) 
V76Gy <= 15% 
V 80Gy <= 5% 

V30Gy <= 80% 
V40Gy <= 60% 
V60Gy <= 40% 
V70Gy <= 15% 
 

 

Spinal 
Cord/Cauda 
Equina 

  Dose [Max] <= 54Gy 

Bowel Bag   Dose [Max] <= 54Gy 

Femoral 
Heads 

V50Gy<= 10% 
Dose [Max] <= 50Gy 

Sigmoid Dose [Max] <= 60Gy 

Penile Bulb Dose [Mean] <= 54Gy 
Table 7 Prostate and Pelvic Lymph node target and normal tissue clinical treatment planning goals. 

Auto-Plan Evaluation 

To evaluate the performance of the developed RapidPlan models, 40 plans were 

generated for various radiotherapy prescriptions for prostate, seminal vesicle, and lymph node 

targets at our institution. Three prescriptions were chosen for intact prostate cases treating 

prostate and proximal SV with a 6mm uniform and 4mm posterior margin. One prescription was 

selected for postoperative cases treating prostate bed and SV-Fossa with a 6mm uniform and 

4mm posterior margin. Two prescriptions were chosen for nodal-involved cases: the prostate 

and SV target was applied with a 6mm uniform and 4mm posterior margin, and the lymph node 
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CTV with a 5mm uniform. A complete list of prescriptions and number of cases evaluated per 

prescription is shown in Table 8. The resultant auto-plans were quantitatively assessed using 

clinical target and OAR dose constraints to ensure they met institutional standards. After the 

plans were generated and normalized, two radiation oncologists reviewed all 40 plans, each 

evaluating the auto-plans on a five-point scale (see Table 4). 

End-to-End Evaluation 

To evaluate the performance of the developed end-to-end automated treatment 

planning process, 65 patients (45 without nodal treatment and 20 with treated nodes) were 

automatically planned to use auto-contoured treatment targets and normal tissue structures. 

The entire prostate and the prescribed extent of proximal SV with a 6mm uniform and 4mm 

posterior margin were treated to 7800cGy in 39 fractions for intact cases. For postop cases, the 

resected prostate bed and SV-fossa volumes with a 6mm uniform and 4mm posterior margin 

were treated to 70Gy in 35 fractions. For nodal-involved cases, the prostate/seminal vesicle 

target with a 6mm uniform and 4mm posterior margin was treated to 70Gy, and the Lymph 

Node target with a 5mm uniform margin was treated to 50.4Gy in 35 fractions. The resultant 

auto-plans were quantitatively evaluated using clinical target and OAR dose constraints and 

compared against the clinical target and OAR contours on the same dose distribution. To 

inspect the differences between auto-contours and the compared clinical contours meeting or 

not meeting dose constraints, structures were categorized into meeting, within 5% or greater 

than 5% of dose constraints. Three radiation oncologists reviewed the auto-plans from auto-

contours on a five-point scale (see Table 4). Table 7 shows the planning goals for respective 

intact-only, postop-only, and nodal treatments. As the second stage of the proposed treatment 

pipeline, only the auto-contoured structures and radiotherapy prescriptions serve as input. The 

margins are automatically added to detailed targets within the provided prescription. 
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Results 

Model Evaluation 

A summary of the quantitative evaluation of clinical dose constraints on auto-plans 

generated from manual contours is listed in Table 9 and Table 10. All cases fall within 5% of 

constraints, with the majority meeting constraints for normal tissues and targets except for 3 

cases. One case occurs with the prostate-only model on the high dose constraint for the 

bladder (V70Gy<=25%) in which the bladder descends considerably into the resected prostate 

bed. Two cases occur within the prostate and node model in which the bowel bag max dose is 

exceeded by 3Gy, and in another case, the bladder low dose constraint (V45Gy<=45%) is 

exceeded by 8%. In both cases, the respective normal tissues come into close proximity to a 

large area of the target CTVs. 

A total of 40 plans were reviewed by two radiation oncologists for qualitative evaluation 

of the auto-plans, with scores listed in Table 8. For both oncologists, 95% of the plans scored a 

four or a five. Of the plans that scored a 3 for the prostate RapidPlan model, physician 1 noted 

that the PTV coverage could be improved inferiorly and superiorly. Physician 2 indicated that 

the dose to the bladder could be pushed lower to spare more of the normal tissue for a 

postoperative case. Of the plans that scored a 3 for the prostate and node RapidPlan model, 

physician 2 noted that the dose received to the rectum and sigmoid was too high. The sigmoid 

dose could be made cooler, and the hotspots should be pushed off the lateral walls of the 

rectum. In general, both physicians approved most plans. Still, they commented that the plans 

could have improved inferior PTV coverage for the prostate and that the rectum doses along 

the anterior wall of the rectum could be slightly improved. For the prostate model, the hotspots 

should be improved around the bladder. For the prostate and node model, the hotspots could 

be improved in and around the bladder, sigmoid, and bowel. 
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RapidPlan 
Model 

Prescription No. 
Cases 

Physician 1 Score Physician 2 Score 
3 4 5 3 4 5 

Prostate  78 Gy in 39 
fractions 

10 1 2 7 0 0 10 

Prostate  72 Gy in 30 
fractions 

1 0 0 1 0 1 0 

Prostate  70 Gy in 35 
fractions 

6 1 4 1 1 0 5 

Prostate 60 Gy in 20 
fractions 

3 0 1 2 0 1 2 

Prostate + 
Nodes 

70 & 50.4 Gy in 
35 fractions 

16 0 9 7 1 12 3 

Prostate + 
Nodes 

59.8 & 46 Gy in 
35 fractions 

4 0 1 3 0 3 1 

Table 8 Qualitative scoring of physician review prostate only and prostate & nodes RapidPlan VMAT 
treatment plans. 

 
Structure 

 
Constraint 

No 
Cases 

Manual Contour, No. (%) 

Met Within 
5% 

Greater 
than 
5% 

CTV  V78Gy>=100 10 8 (80) 2 (20) 0 (0) 

CTV  V78Gy>=95 10 10 (100) 0 (0) 0 (0) 

PTV  V78Gy>=98 10 10 (100) 0 (0) 0 (0) 

PTV  V78Gy>=95 10 10 (100) 0 (0) 0 (0) 

PTV  𝐷𝑚𝑎𝑥<=84.2 Gy 10 9 (90) 1 (10) 0 (0) 

CTV  V70Gy>=100 6 4 (67) 2 (33) 0 (0) 

CTV  V70Gy>=95 6 6 (100) 0 (0) 0 (0) 

PTV  V70Gy>=98 6 5 (83) 1 (17) 0 (0) 

PTV  V70Gy>=95 6 6 (100) 0 (0) 0 (0) 

PTV  𝐷𝑚𝑎𝑥<=75.6 6 5 (83) 1 (17) 0 (0) 

CTV  V60Gy>=100 3 3 (100) 0 (0) 0 (0) 

CTV  V60Gy>=95 3 3 (100) 0 (0) 0 (0) 

PTV  V60Gy>=98 3 3 (100) 0 (0) 0 (0) 

PTV  V60Gy>=95 3 3 (100) 0 (0) 0 (0) 

PTV  𝐷𝑚𝑎𝑥<=64.8 3 3 (100) 0 (0) 0 (0) 

CTV  V72Gy>=100 1 1 (100) 0 (0) 0 (0) 

CTV  V72Gy>=95 1 1 (100) 0 (0) 0 (0) 

PTV  V72Gy>=98 1 1 (100) 0 (0) 0 (0) 

PTV  V72Gy>=95 1 1 (100) 0 (0) 0 (0) 

PTV  𝐷𝑚𝑎𝑥<=77.76 1 1 (100) 0 (0) 0 (0) 

Rectum  V30Gy<=80 16 16 (100) 0 (0) 0 (0) 

Rectum  V40Gy<=60 16 16 (100) 0 (0) 0 (0) 

Rectum  V60Gy<=40 10 10 (100) 0 (0) 0 (0) 

Rectum  V70Gy<=20 10 10 (100) 0 (0) 0 (0) 

Rectum  V70Gy<=15 16 16 (100) 0 (0) 0 (0) 
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Rectum  V76Gy<=15 10 10 (100) 0 (0) 0 (0) 

Rectum  V80Gy<=5 10 10 (100) 0 (0) 0 (0) 

Rectum  V25Gy<=80 1 1 (100) 0 (0) 0 (0) 

Rectum  V35Gy<=60 1 1 (100) 0 (0) 0 (0) 

Rectum  V50Gy<=40 7 7 (100) 0 (0) 0 (0) 

Rectum  V60Gy<=20 1 1 (100) 0 (0) 0 (0) 

Rectum  V60Gy<=15 4 4 (100) 0 (0) 0 (0) 

Rectum  V65Gy<=15 1 1 (100) 0 (0) 0 (0) 

Rectum  V48Gy<=50 3 3 (100) 0 (0) 0 (0) 

Rectum  V52Gy<=35 3 3 (100) 0 (0) 0 (0) 

Rectum  V56Gy<=25 3 3 (100) 0 (0) 0 (0) 

Bladder  V60Gy<=40 16 16 (100) 0 (0) 0 (0) 

Bladder  V70Gy<=20 16 15 (94) 0 (0) 1 (6) 

Bladder  V65Gy<=20 1 1 (100) 0 (0) 0 (0) 

Bladder  V52Gy<=50 3 3 (100) 0 (0) 0 (0) 

Bladder  V56Gy<=35 3 3 (100) 0 (0) 0 (0) 

Bladder  V60Gy<=25 3 3 (100) 0 (0) 0 (0) 

Femoral Heads  V35Gy<=50 1 1 (100) 0 (0) 0 (0) 

Femoral Heads V40Gy<=10 1 1 (100) 0 (0) 0 (0) 

Femoral Heads V45Gy<=2 1 1 (100) 0 (0) 0 (0) 

Femoral Heads  V50Gy<=10 19 19 (100) 0 (0) 0 (0) 

Femoral Heads 𝐷𝑚𝑎𝑥<=54 19 19 (100) 0 (0) 0 (0) 

Small Bowel  V25Gy<=50 1 1 (100) 0 (0) 0 (0) 

Small Bowel V45Gy<=33 1 1 (100) 0 (0) 0 (0) 

Small Bowel  V52Gy<=2 1 1 (100) 0 (0) 0 (0) 

Sigmoid  𝐷𝑚𝑎𝑥<=60 20 20 (100) 0 (0) 0 (0) 

PenileBulb  𝐷𝑚𝑒𝑎𝑛<=54 20 20 (100) 0 (0) 0 (0) 
Table 9 Summary for auto-plans meeting, within 5% of or greater than 5% of dosimetric recommendations 

on manually drawn contour set for four radiation treatment prescriptions: three on prostate and seminal vesicle 
targets for 78, 72, and 60 Gy and one on the prostate bed and SV-fossa targets for 70 Gy. 

 
Structure 

 
Constraint 

 
No. Cases 

Manual Contour, No. (%) 

Met Within 
5% 

Greater 
than 
5% 

PTV_7000 V70Gy>=98% 16 16 (100) 0 (0) 0 (0) 

PTV_7000 Max<=75.6Gy 16 15 
(93.75) 

1 (6.25) 0 (0) 

PTV_5040 V50.4Gy>=98 16 15 
(93.75) 

1 (6.25) 0 (0) 

PTV_5980 V59.8Gy>=98% 4 3 (75) 1 (25) 0 (0) 

PTV_5980  𝐷𝑚𝑎𝑥 <=64.6Gy 4 3 (75) 1 (25) 0 (0) 

PTV_4600  V46Gy>=98% 4 3 (75) 1 (25) 0 (0) 

Rectum  V65Gy<=15% 16 16 (100) 0 (0) 0 (0) 

Rectum  V60Gy<=20% 16 16 (100) 0 (0) 0 (0) 
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Rectum  V60Gy<=11cc 4 3 (75) 1 (25) 0 (0) 

Rectum  V55Gy<=25% 16 16 (100) 0 (0) 0 (0) 

Rectum  V54Gy<=15% 4 4 (100) 0 (0) 0 (0) 

Rectum  V45Gy<=45% 16 16 (100) 0 (0) 0 (0) 

Rectum  V35Gy<=60% 20 20 (100) 0 (0) 0 (0) 

Rectum  V25Gy<=80% 20 19 (95) 1 (5) 0 (0) 

Bladder  V65Gy<=15% 16 16 (100) 0 (0) 0 (0) 

Bladder  V60Gy<=15% 4 4 (100) 0 (0) 0 (0) 

Bladder  V55Gy<=25% 16 16 (100) 0 (0) 0 (0) 

Bladder  V54Gy<=25% 4 4 (100) 0 (0) 0 (0) 

Bladder  V45Gy<=45% 20 17 (85) 2 (10) 1 (5) 

Bowel  𝐷𝑚𝑎𝑥<=54Gy 20 15 (75) 4 (20) 1 (5) 

Sigmoid  𝐷𝑚𝑎𝑥=60Gy 20 20 (100) 0 (0) 0 (0) 

PenileBulb  𝐷𝑚𝑒𝑎𝑛<=54Gy 20 20 (100) 0 (0) 0 (0) 

Femoral Heads 𝐷𝑚𝑎𝑥<=54Gy 20 20 (100) 0 (0) 0 (0) 

Femoral Heads V50Gy<=10% 20 20 (100) 0 (0) 0 (0) 

Spinal Cord  𝐷𝑚𝑎𝑥<=54Gy 20 20 (100) 0 (0) 0 (0) 

Cauda Equina 𝐷𝑚𝑎𝑥<=54Gy 20 20 (100) 0 (0) 0 (0) 
Table 10 Summary for auto-plans meeting, within 5% of or greater than 5% of dosimetric recommendations 

on manually drawn contour set for two radiation treatment prescriptions on prostate and lymph node targets: 70 & 

50.4Gy in 35 fractions and 59.8 & 46Gy in 35 fractions. 

End-to-End Evaluation 

A summary of the quantitative evaluation of clinical dose constraints on auto-plans 

generated from auto-segmented contours is listed in Table 10 through Table 12. There is 

considerable agreement between auto-contours and clinical contours for prostate and seminal 

vesicle targets. For CTV dose constraints, at least 90% of auto-contoured CTVs would have 

met the same constraint within 5% on the clinical contours. For PTV dose constraints, at least 

35% of auto-generated PTVs would have met the same constraint within 5% of the clinical 

PTVs. For prostate bed and SV-Fossa targets, there is also a considerable agreement between 

the achievement of dose constraint goals between auto-contours and clinical contours. For 

CTV dose constraints, all auto-contoured CTVs would have met the same constraint within 5% 

on the clinical contours. For PTV dose constraints, at least 50% of auto-generated PTVs and 

clinical PTVs would have met the same constraint within 5%. However, we see lower 

agreement between auto-contours and clinical contours for prostate and nodal targets. At least 

75% of all auto-countered CTVs would have met the same constraint within 5% on the clinical 
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contours. Then, for PTV dose constraints, at least 10% of auto-generated PTVs would have 

met the same constraint within 5% on the clinical PTVs. 

The prostate model achieved dose constraints for normal tissues more readily than the 

prostate and node model. For intact prostate plans, rectum, bladder, and femoral head dose 

constraints were achieved for at least 90% of auto-contours and clinical contours. For sigmoid, 

at least 69% auto contour and clinical contours met the max dose constraint of 60Gy. For 

postop prostate plans, rectum, bladder, and femoral head dose constraints were achieved for 

at least 89% of auto-contours and clinical contours. For cases where rectum and bladder high 

dose constraints were greater than 5%, auto-contours and clinical contours contained high 

curvature and odd total volume, respectively. For sigmoid, at least 89% of clinical cases have 

sigmoid contours present. More normal tissue constraints were greater than 5% for prostate 

and node plans. At least 50% of all auto-contours and clinical contours for the rectum and 

bladder were achieved within 5% of dose constraints. For sigmoid and bowel bag, at least 75% 

and 95% of all auto-contours and clinical contours were achieved within 5% of dose 

constraints, respectively. Both sigmoid and penile bulb clinical contours were not delineated in 

all postop and prostate plus node test cases.  

 

Figure 11 Visualization of automated treatment plans from Prostate only RadidPlan 
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  Auto Contour, No. (%) Clinical Contour, No. (%) 

STRUCTURE CONSTRAINT Met Within 
5% 

Greater 
than 
5% 

Met Within 
5% 

Greater 
than 
5% 

CTV V78Gy>=100% 23 (88) 3 (12) 0 (0) 9 (35) 15 (58) 2 (8) 

CTV V78Gy>=95% 26 (100) 0 (0) 0 (0) 24 (92) 1 (4) 1 (4) 

PTV V78Gy>=98% 26 (100) 0 (0) 0 (0) 6 (23) 4 (15) 16 (62) 

PTV V78Gy>=95% 26 (100) 0 (0) 0 (0) 7 (27) 7 (27) 12 (46) 

PTV 𝐷𝑚𝑎𝑥<=84.2 

Gy 
17 (65) 6 (23) 3 (12) 21 (81) 2 (8) 3 (12) 

RECTUM V30 Gy<=80% 26 (100) 0 (0) 0 (0) 24 (92) 0 (0) 2 (8) 

RECTUM V40 Gy<=60% 26 (100) 0 (0) 0 (0) 24 (92) 0 (0) 2 (8) 

RECTUM V60 Gy<=40% 26 (100) 0 (0) 0 (0) 24 (92) 0 (0) 2 (8) 

RECTUM V70 Gy<=20% 26 (100) 0 (0) 0 (0) 24 (92) 0 (0) 2 (8) 

RECTUM V70 Gy<=15 25 (96) 1 (4) 0 (0) 24 (92) 0 (0) 2 (8) 

RECTUM V76 Gy<=15% 26 (100) 0 (0) 0 (0) 24 (92) 0 (0) 2 (8) 

RECTUM V80 Gy<=5% 26 (100) 0 (0) 0 (0) 24 (92) 0 (0) 2 (8) 

BLADDER V60 Gy<=40% 26 (100) 0 (0) 0 (0) 26 (100) 0 (0) 0 (0) 

BLADDER V70 Gy <=20% 26 (100) 0 (0) 0 (0) 26 (100) 0 (0) 0 (0) 

SIGMOID 𝐷𝑚𝑎𝑥<=60 Gy 18 (69) 0 (0) 8 (31) 19 (73) 0 (0) 7 (27) 

FEMORAL 
HEADS 

V50Gy<=10% 26 (100) 0 (0) 0 (0) 25 (96) 0 (0) 0 (0) 

FEMORAL 
HEADS 

𝐷𝑚𝑎𝑥<=54 Gy 26 (100) 0 (0) 0 (0) 25 (96) 0 (0) 0 (0) 

PENILEBULB 𝐷𝑚𝑒𝑎𝑛<=54 Gy 26 (100) 0 (0) 0 (0) 6 (23) 0 (0) 0 (0) 
Table 11 Summary for auto-plans meeting, within 5% of or greater than 5% of dosimetric recommendations 

on auto-contours and clinical contours with radiation treatment prescription on Prostate and seminal vesicle targets 

of 78Gy in end-to-end testing of treatment pipeline. 

 

STRUCTURE  CONSTRAINT  AUTO CONTOUR, NO. 
(%) 

CLINICAL CONTOUR, 
NO. (%) 

Met Within 
5% 

Greater 
than 
5% 

Met Within 
5% 

Greater 
than 
5% 

CTV V70GY>=100% 18 (95) 1 (5) 0 (0) 9 (47) 10 (53) 0 (0) 

CTV V70GY>=95% 19 (100) 0 (0) 0 (0) 19 (100) 0 (0) 0 (0) 

PTV V70GY>=98% 19 (100) 0 (0) 0 (0) 4 (21) 6 (32) 9 (47) 

PTV V70GY>=95% 19 (100) 0 (0) 0 (0) 9 (47) 2 (11) 8 (42) 

PTV 𝐷𝑚𝑎𝑥<=75.6 GY 7 (37) 12 (63) 0 (0) 7 (37) 12 (63) 0 (0) 

RECTUM V30GY<=80% 19 (100) 0 (0) 0 (0) 19 (100) 0 (0) 0 (0) 

RECTUM V40GY<=60% 19 (100) 0 (0) 0 (0) 19 (100) 0 (0) 0 (0) 

RECTUM V60GY<=40% 18 (95) 1 (5) 0 (0) 19 (100) 0 (0) 0 (0) 

RECTUM V70GY<=15% 17 (89) 0 (0) 2 (11) 18 (95) 0 (0) 1 (5) 

BLADDER V60GY<=40% 19 (100) 0 (0) 0 (0) 19 (100) 0 (0) 0 (0) 

BLADDER V70GY<=20% 17 (89) 0 (0) 2 (11) 17 (89) 1 (5) 1 (5) 
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SIGMOID 𝐷𝑚𝑎𝑥<=60% 17 (89) 1 (5) 1 (5) 18 (95) 0 (0) 0 (0) 

FEMORAL 
HEADS 

V50GY<=10% 19 (100) 0 (0) 0 (0) 19 (100) 0 (0) 0 (0) 

FEMORAL 
HEADS 

𝐷𝑚𝑎𝑥<=54 GY 19 (100) 0 (0) 0 (0) 19 (100) 0 (0) 0 (0) 

PENILEBULB 𝐷𝑚𝑒𝑎𝑛<=54 GY 18 (95) 1 (5) 0 (0) 2 (11) 0 (0) 1 (5) 
Table 12 Summary for auto-plans meeting, within 5% of or greater than 5% of dosimetric recommendations 

on auto-contours and clinical contours with radiation treatment prescription on Prostate Bed and SV-Fossa targets of 
70Gy in end-to-end testing of treatment pipeline. 

 

 
STRUCTURE 

 
CONSTRAINT 

AUTO CONTOUR, NO. (%) CLINICAL CONTOUR, NO. (%) 

MET WITHIN 
5% 

GREATE
R THAN 

5% 

MET WITHIN 
5% 

GREATE
R THAN 

5% 

CTV V70GY>=100% 16 (80) 4 (20) 0 (0) 3 (15) 12 (60) 5 (25) 

LYMPH 
NODE CTV 

V50.4GY>=100% 16 (80) 4 (20) 0 (0) 1 (5) 15 (75) 4 (20) 

PTV V70GY>=98% 20 (100) 0 (0) 0 (0) 1 (5) 6 (30) 13 (65) 

PTV 𝐷𝑚𝑎𝑥<=75.6 GY 7 (35) 13 (65) 0 (0) 10 (50) 10 (50) 0 (0) 

LYMPH 
NODE PTV 

V50.4GY>=98% 20 (100) 0 (0) 0 (0) 0 (0) 2 (10) 18 (90) 

RECTUM V65GY<=15% 6 (30) 4 (20) 10 (50) 13 (65) 1 (5) 6 (30) 

RECTUM V60GY<=20% 8 (40) 2 (10) 10 (50) 14 (70) 0 (0) 6 (30) 

RECTUM V55GY<=25% 9 (45) 1 (5) 10 (50) 13 (65) 2 (10) 5 (25) 

RECTUM V45GY<=45% 15 (75) 0 (0) 5 (25) 11 (55) 3 (15) 6 (30) 

RECTUM V35GY<=60% 15 (75) 0 (0) 5 (25) 10 (50) 2 (10) 8 (40) 

RECTUM V25GY<=80% 15 (75) 2 (10) 3 (15) 10 (50) 3 (15) 7 (35) 

BLADDER V65GY<=15% 8 (40) 2 (10) 10 (50) 10 (50) 0 (0) 10 (50) 

BLADDER V55GY<=25% 15 (75) 0 (0) 5 (25) 15 (75) 0 (0) 5 (25) 

BLADDER V45GY<=45% 15 (75) 2 (10) 3 (15) 15 (75) 2 (10) 3 (15) 

BOWEL 𝐷𝑚𝑎𝑥<=54GY 0 (0) 19 (95) 1 (5) 3 (15) 16 (80) 1 (5) 

SIGMOID 𝐷𝑚𝑎𝑥=60GY 14 (70) 1 (5) 5 (25) 0 (0) 18 (90) 0 (0) 

PENILEBULB 𝐷𝑚𝑒𝑎𝑛<=54GY 17 (85) 1 (5) 2 (10) 2 (10) 0 (0) 2 (10) 

FEMORAL 
HEADS 

𝐷𝑚𝑎𝑥<=54GY 20 (100) 0 (0) 0 (0) 20 
(100) 

0 (0) 0 (0) 
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FEMORAL 
HEADS 

V50GY<=10% 20 (100) 0 (0) 0 (0) 20 
(100) 

0 (0) 0 (0) 

SPINAL 
CORD 

𝐷𝑚𝑎𝑥<=54GY 20 (100) 0 (0) 0 (0) 20 
(100) 

0 (0) 0 (0) 

CAUDA 
EQUINA 

𝐷𝑚𝑎𝑥<=54 GY 20 (100) 0 (0) 0 (0) 20 
(100) 

0 (0) 0 (0) 

Table 13 Summary for auto-plans meeting, within 5% of or greater than 5% of dosimetric recommendations 
on auto-contours and clinical contours with radiation treatment prescription on prostate and lymph node targets of 70 

& 50.4Gy in end-to-end testing of treatment pipeline. 

Discussion 

Two RapidPlan models were previously developed for a breadth of prostate treatment 

scenarios and used in end-to-end testing of the proposed treatment pipeline. The first 

RapidPlan model developed was able to produce VMAT plans for both intact and postoperative 

prostate with and without the presence of spacers or rectal balloons. The second RapidPlan 

model was developed to contour prostate cases with Lymph Node involvement again with the 

presence of hydrogel spacers or rectal balloons. Plans generated from manual contours 

resulted in greater acceptance from physician reviewers than those generated from auto 

contours. However, for most end-to-end evaluated cases, the differences in pass rates when 

compared to clinical contours were not greater than 5% of dose constraints in most cases. At 

least 50% of all treatment cases created from auto-plans would have passed on the clinical 

contours for targets and normal tissues. For the review of plans, the choice of the Likert scale 

was used based on established use in literature for use in automated planning algorithms 

(Baroudi et al., 2023; Huang et al., 2022). 

Reviewers of the auto-generated intact and postop plans commented on the hotspot for 

both treatment cases. For intact patients, the hotspots remained within the PTVs; however, the 

location of these hotspots tended to be superior to the prostate within the Seminal Vesicles and 

close to the rectum and sigmoid. For postop patients, the dose of the overall postoperative CTV 

was high, resulting in an excess dose to 10% of bladder and rectum patients. Other developed 

RapidPlan models reported a similar increase in high-dose bladder constraints, although mean 

doses remained low (Kubo et al., 2017). It was recommended that the mean doses of plans 
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without nodal involvement be lowered. This was most notable in reviewed postoperative cases, 

mainly where the bladder descended deep within the resected postoperative prostate cavity. 

For prostate and node plans, the rate of meeting dose constraints was not sufficient to 

obtain physician review. Auto-contours exhibited hotspots around the periphery of the prostate 

PTV, which resulted in higher doses of the clinical sigmoid. High dose gradients around the 

unions of the Lymph node PTV and the prostate PTV resulted in higher doses to the bowel, 

causing both auto contours and clinical contours to pass this constraint but remain within 3 Gy 

of the constraint. For patients not passing rectum and bladder constraints, high rectum 

curvatures at the level of the prostate and bladders descending deep into the resected prostate 

bed are anatomical patterns creating challenging treatment scenarios for automation. Highly 

curved rectum contours border a larger volume of the resected prostate bed, causing a large 

area for high-dose gradients to form. Descending bladder contours into the prostate bed results 

in larger doses to the bladder that are difficult to optimize to give overlap with the target 

volume. The model for prostate and nodes was developed with a set of 37 patients with a 2:3 

ratio of intact and postoperative prostate with node treatment plans. However, the examined 

auto-contour set was mostly postoperative prostate and node plans; therefore, it is probable 

that the high curvature and descending bladder anatomies and resultant treatment parameters 

are not well represented in the model, and DVH optimization is strained to meet constraints for 

these scenarios. However, based on a review of contours for the postoperative prostate, 

redress of the excessive size of the prostate bed and SV-fossa must occur first before stress 

testing of the prostate and node model can be considered.  

Conclusion 

The study proposed, developed, and tested automated solutions to create VMAT 

prostate radiotherapy treatment plans. The study demonstrated the ability of RapidPlan models 

to create acceptable treatment plans for a breadth of prostate treatment scenarios, including 

intact, postoperative, and lymph node-involved prostate cases, in an end-to-end manner. 
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Postoperative treatment volumes present a challenge for end-to-end automated treatment 

approaches to achieve the desired threshold of clinical acceptability. The results of this study 

demonstrate the ability to meet clinical dose constraints on clinical targets from predicted 

contours. 
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CHAPTER 5: DISCUSSION AND CONCLUSION 

Project Summary 

The main goal of this project was to automate the treatment planning process for 

prostate cancer radiotherapy. A two-stage treatment pipeline of auto-segmentation and auto-

planning was proposed to achieve this goal. The resultant pipeline serves as a minimal 

interaction system to generate complete VMAT treatment plans from predicted target and 

normal tissue structures. The segmentation of a breadth of commonly included prostate 

structures and their corresponding treatment plans were automated and reviewed for clinical 

acceptability in an end-to-end method.  

The chapter on automated contouring presents our solution for the automation of intact 

and postoperative structures with and without treatment devices and nodal involvement of the 

disease. Our approach involved using multiple nnU-Net models to generate tissue-specific and 

volumetric segmentation of target tissues and organs at risk. Target and normal tissue 

structures were separated into distinctive models to enhance model robustness to unique 

feature spaces and allow the flexibility of contouring structures that are or are not needed in 

treatment.  Additional post-processing was added to resultant contours to ensure adherence to 

contouring guidelines and resolve segmentation inaccuracies resulting from independent model 

predictions. Planning target volumes were generated with input margins depending on the 

prescribed target structures.  

When considering the quantitative results of the proposed model methods to those 

reported in the literature, our model structures are within the reported overlap and distance 

metrics range in recent years (see Table 6). While the proposed contouring methods were not 

the highest achieving in terms of DSC and HD95, it must also be taken into consideration that 

the models proposed in the literature do not account for treatment scenarios of tissue-specific 

and volumetric contouring with image artifacts and treatment devices in the same contouring 

model. Additionally, the contouring datasets are smaller and encompass a shorter history of 
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clinical contouring practice without detail to large scopes of treatment anatomies or contouring 

styles across physicians present in simulation CT image data at an institution.  

From the review of auto-contours, no contours presented were found to contain more 

than minor edits. While this demonstrates that all contours currently generated from these 

proposed models are clinically usable, they are not at the hypothesized threshold of clinical 

acceptability. However, it was established in this study that the proposed auto-contours were 

more efficient to edit than contouring from scratch. The benchmark for clinical acceptability with 

minor edits is within the range of similar studies of prostate cancer contouring in the literature 

(Cha et al., 2021; Kiljunen et al., 2020). The distinction between stylistic and necessary edits 

evaluated in this study was important in extracting necessary information about the fitness of 

contours for clinical implementation. This was most notable in the contour review of 

postoperative target structures and their corresponding normal tissues. Greater improvement in 

target structures would be in border delineations to exclude vessels, nerves, and muscles 

adjacent to these target volumes. For normal tissue structures, the greatest improvement would 

be in delineating the boundaries between the rectum and sigmoid and providing a more 

quantifiable definition of accession and transition curvature.  

The chapter on automated planning presents our solution for the automated generation 

of VMAT treatment plans for prostate cancer. Through the use of two RapidPlan models, 

contours generated for each patient simulation CT were then analyzed to provide an initial DVH 

estimation from the initial optimization of a plan, which is guided by the DVH estimation. 

Subsequent optimization iterations for prostate and prostate with node cases reduce plan 

hotspots and improve target conformality while shifting radiation delivery away from key organs 

at risk. The resultant plans are then normalized to meet the prescription if they have not already 

been achieved through the subsequent optimization iterations. Upon quantitative evaluation of 

manual and end-to-end treatment plans, most treatment plans passed dosimetric constraints. 

For the majority of constraints not met through the proposed end-to-end process, the plans 

were within 5% of clinical dose constraints. Furthermore, trends meeting dose constraints on 
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auto-contours translated to clinical contours in those constraints that did not pass on auto-

contours would also not pass on the control group of manually drawn clinical contours. This 

indicates that the proposed auto-plans generated from auto-contours serve as a plausible 

representation of reviewed and accepted clinical structures. When considering the 45 

automatically generated VMAT plans generated from auto-contours reviewed by physicians, at 

least 80% of intact and 58% of postop treatment plans scored as requiring no more than minor 

stylistic edits; this indicates that the plans are useable and able to be optimized to become 

clinically acceptable after necessary edits are performed. 

Study Limitations and Future Directions 

The methodology employed in our study exhibits several limitations that warrant 

consideration. Firstly, although our dataset encompasses a diverse range of treatment cases, 

our exploration of dosimetric evaluation of auto contours was confined to a singular prescription 

for intact and postoperative treatments with or without nodal involvement. The choice of 

prescriptions in this investigation was selected to evaluate the potential to meet dosimetric 

constraints for hyper-fractionated treatments of high-dose regimens within our institution and 

those recommended according to accepted treatment guidelines (“ NCCN guidelines: prostate 

cancer (version 3.2024).,” ). This narrow scope restricts the generalizability of our findings to 

broader treatment contexts in which hypo-fractionated treatments or treatments of multiple 

dose levels are administered (Kaderka et al., 2019; Langrand-Escure et al., 2018; Qureshy et 

al., 2023). While changes in the current knowledge base of prior treatments in the RapidPlan 

models used would need to be adjusted for hypofractionated treatments, evaluation of multiple 

dose levels is within the scope of current models to evaluate the pass rates of clinical dose 

constraints. 

While contour review was performed as a direct categorical score of quality (i.e., score 

contours and then score plan), contour performance could be evaluated in follow-up inquiries 

by asking physicians what adjustments they would make to auto-segmented contours upon 
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review of the treatment plan. As the questioning and feedback of contour review were 

performed with a direct score of each individual contour for acceptability, feedback on contour 

quality was generated in the absence of viewing the plan. Quantitative metrics require a 

qualitative review to elucidate the intricate numerical features in the context of correct anatomy 

and adherence to clinical practice and guidelines (Reinke et al., 2023). Therefore, contour 

usability would be more appreciated in the context of structure delineation when a course of 

radiation delivery is presented. Methods to include physician edits in auto-segmentation 

approaches have been proposed through graph neural network-based models on MR images 

(Tian et al., 2020).  

With regard to medical imaging data, the focus was exclusively on CT data. The 

exclusion of other imaging modalities leads to the underuse of imaging technologies used in 

clinical settings to overcome limitations in soft tissue contrast to delineate structures. MR 

imaging, with enhanced soft-tissue contrast coupled with CT imaging, would overcome 

difficulties in addressing low contrast boundaries and variations in noise/appearance patterns in 

basal and apical regions of the prostate (Tian et al., 2020). MR-based deep learning 

approaches are a continued area of research for medical imaging segmentation, including the 

use of CT and MR fusion images (Almeida and Tavares, 2020). Moreover, our investigation 

was constrained by the utilization of a single set of guidelines for each contour, neglecting the 

potential variability introduced by employing alternative guideline frameworks. Additionally, the 

inclusion criteria for contours were restricted to those conforming to specific guidelines, 

disregarding potential clinical factors that may influence deviations from these guidelines (Li et 

al., 2021). This narrow selection criterion may limit the comprehensiveness of our analysis and 

the extrapolation of our findings to clinical scenarios at other institutions. 

Considering these limitations, several avenues for future research emerge. One 

prospective direction involves revisiting the planning approach while incorporating modified 

contours, thereby assessing the impact of such adjustments on treatment outcomes. This is to 

act not only as an end-to-end evaluation of our pipeline performance but also to assess the 
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extent to which corrected plans match manual plan performance and clinical acceptance. 

Furthermore, the location and effort in edits can be quantified and tracked through metrics such 

as added path length, which have been used to study the effect of edits on contour and 

planning time (Cha et al., 2021; Vaassen et al., 2020). Additionally, conducting quality 

assurance checks on the auto contours by comparing them with alternative auto-contouring 

methodologies could provide valuable insights into the robustness and reliability of the current 

contouring techniques. Studies using multiple models to evaluate outliers or abnormalities in 

cervical and head and neck cancers for both contour and plan quality (Gronberg et al., 2022; 

Rhee et al., 2019). Such endeavors promise to advance the understanding and efficacy of 

contouring practices in clinical settings. 

Conclusion 

The work presented in this thesis demonstrates the potential for end-to-end treatment 

planning for prostate cancer through automated segmentation and automated planning of the 

prostate radiotherapy workflow process. 
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