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Abstract. Censored quantile regressions have received a great deal of at-

tention in the literature. In a linear setup, recent research has found that an

estimator based on the idea of “redistribution-of-mass” (Efron, 1967) has better

numerical performance than other available methods. In this paper, this idea is

combined with the local polynomial kernel smoothing for nonparametric quantile

regression of censored data. We derive the uniform Bahadur representation for

the estimator and, more importantly, give theoretical justification for its improved

efficiency over existing estimation methods. We include an example to illustrate

the usefulness of such a uniform representation in the context of sufficient dimen-

sion reduction in regression analysis. Finally, simulations are used to investigate

the finite sample performance of the new estimator.

Key words and phrases. Bahadur representation; empirical processes; gener-

alized Kaplan-Meier estimator; local polynomial smoothing; quantile regression;

random censoring; semiparametric models; stochastic equicontinuity; dimension

reduction.
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1 Introduction

Let X be a p× 1 vector of covariates and T be a dependent (scalar) variable of interest, such

as a logarithmic or another monotonic transformation of survival time. In survival analysis,

quite often the value of T is not directly observable due to censoring. What is observed,

instead, is the triple ξ = (Y,X, d) such that

Y = min(T,C), d = I(T ≤ C), (1)

where I(.) is the indicator function and C is the censoring variable, assumed to be condition-

ally independent of T given X. 1

In investigating the functional relationship between T and X, many classical methods

of analysis are rendered obsolete, as censoring can cause a breakdown in the normality as-

sumptions or moment restrictions which underlie the construction of these methods. Alterna-

tively, modelling could be based on the conditional hazard function of T given X, such as the

semi-parametric Cox proportional hazard model which requires unconditional independence

between T and C, and the accelerated failure time models which are predominately fully

parametric.

Since quantile regression (Koenker and Bassett, 1978; Koenker and Geling, 2001) is more

robust to censoring, it has become a very popular choice in the analysis of censored data

(Powell, 1984; Powell, 1986). In this case, the function of interest is the conditional τth

quantile of T given X, defined as

Qτ (X) = min{t : F0(t|X) ≥ τ}, (2)

where F0(.|.) denotes the conditional distribution function of T given X. Collectively, (1) and

(2) specify the so-called censored quantile regression (CQR) model. Note that an equivalent

but more commonly used form of (2) can be defined as follows

Qτ (X) = arga minE[ρτ (T − a)|X], (3)

where ρτ (u) = u[τ − I(u < 0)].

A large body of research has been devoted to studying various aspects of the CQR; see,

for example, Buchinsky and Hahn (1998), Chernozhukov and Hong (2002), Portnoy (2003),

De Gooijer and Zerom (2003), Peng and Huang (2008), Zhou and Wu (2009), El Ghouch and

Van Keilegom (2009) and Wang and Wang (2009). While most of these studies assume that

the quantile function belongs to a fixed finite-dimensional space of functions, less work has
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been done for nonparametric censored regression models. Below, let us list a few well-known

examples. Dabrowska (1987, 1992) and Van Keilegom and Veraverbeke (1998) proposed

nonparametric censored regression estimators based on quantile methods. Lewbel and Linton

(2002) considered the case where the censoring time is a degenerate random variable (i.e., it

is constant), while Chen, Dahl and Khan (2005) allowed for heteroscedasticity. Heuchenne

and Van Keilegom (2007, 2008) considered a nonparametric regression model, where the error

term is independent of the covariates. Linton, Mammen, Nielsen and Van Keilegom (2011)

studied univariate regression models with a variety of censoring schemes, while employing

estimation methods based on hazard functions. The most noteworthy is the work by Kong,

Linton and Xia (2013), who investigated the same estimation problem as will be discussed

in this paper but with a critical shortfall in the sense that their estimation method suffered

from poor efficiency.

The core issue in estimating the CQR model is how to handle the censored observations.

While a naive approach (either these observations are simply thrown away or Y is used as a

substitute for T ) is certainly inconsistent, a number of consistent methods have been proposed

for linear CQR. Under the assumption that C is independent of both T and X (a relatively

strong assumption), Honoré, Khan and Powell (2002) suggested replacing ρτ (Y − β>X)

with its conditional expectation given ξ = (Y,X, d). On the contrary, Lindgren (1997) and

Bang and Tsiatis (2002) considered the use of w(ξ) = d/[1 − G(Y |X)], where G(.|X) is the

conditional distribution function of C given X. Such a weighting scheme, which is referred

to hereafter as the LBT weight, is derived from the fact that E(d/[1−G(Y |X)]) = 1 and can

lead to loss of information as only those uncensored observations with d = 1 are used in the

estimation.

A heuristically more efficient weighting scheme introduced by Portnoy (2003), and Wang

et al. (2009) was based on the idea of ‘redistribution-of-mass’ (RDW) of Efron (1967). This

involves the redistribution to the right of the probability 1 − F0(C|X) = P (T > C|X) for

each censored observation. Specifically, for quantile regression at level τ , the RDW weight

assigned to ξ = (Y,X, d) is

w(τ |ξ) =

{
1, d = 1 or F0(C|X) > τ ;
τ−F0(C|X)
1−F0(C|X) , d = 0 and F0(C|X) < τ.

(4)

However, since F0(.|.) is usually unknown, a substitute, for example the generalized Kaplan-

Meier (K-M) estimator, is often used. Wang et al. (2009) gave a comprehensive review of

this weighting scheme for the estimation of linear CQR and demonstrated that in general the

RDW weighting scheme should be recommended due to its superior numerical performance
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compared to its competitors.

This paper studies estimation of the nonparametric censored quantile regression (NCQR),

where the function of interest is Qτ (x) and (or) its partial derivatives, which are evaluated

at any τ ∈ (0, 1) and x in the support of X. We propose an estimation procedure that

combines local polynomial smoothing with the RDW weighting scheme. Furthermore, we

derive a global Bahadur representation of the resulting estimator uniformly over both the

value of the covariate x and the quantile level τ .

The Bahadur (1966) representation is a useful tool to study the asymptotic properties of

estimators when the loss function is not smooth as in M-estimation and quantile regression,

for example. The Bahadur representation approximates an estimator by a sum of indepen-

dent variables with a higher order remainder (He and Shao, 1996) so that the asymptotic

properties of the estimator can be easily derived. In the literature, a number of different Ba-

hadur representations have been obtained under various different settings. Carroll (1978) and

Martinsek (1989) obtained strong representations for location and regression M-estimators

with preliminary scale estimates, while Babu (1989) and Pollard (1991) obtained the Ba-

hadur representation for the least absolute deviation regression. In addition, Portnoy (1997)

obtained the Bahadur representation for quantile smoothing splines, while Portnoy (2003)

did so for the censored quantile of the Cox model. Chaudhuri (1991) investigated the point-

wise Bahadur representation of nonparametric kernel quantile regression, while Wu (2005)

examined the representation for nonstationary time series data under both parametric and

nonparametric settings; see also Zhou et al. (2009).

In nonparametric settings, ‘global’ (or equivalently ‘uniform’) asymptotic theory (Bickel

and Rosenblatt, 1973; Mack and Silverman, 1982) is essential for conducting statistical in-

ference. Hence, uniform Bahadur representations are often more useful than their pointwise

counterparts. In the current paper, note that the term ‘uniform’ (or ‘global’) refers inter-

changeably to the order of the remainder term that is uniform over a collection of τ and x.

In such a sense, Kong, Linton and Xia (2010) and Guerre and Sabbah (2011) obtained the

uniform Bahadur representation for the quantile local polynomial estimators. A more com-

prehensive survey of these kinds of Bahadur representations in the context of nonparametric

quantile regression with complete data can be found in Kong et al. (2013); see also Kong et

al. (2010) and the references therein.

In this paper, the RDW weighting scheme will be used in the derivation of the the global

Bahadur representation instead of the LBT weighting scheme as in Kong et al. (2013). This

seemingly small difference does have far-reaching implications as detailed below.
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• In contrast to the LBT weight, which uses only uncensored data, the RDW weighting

scheme uses all available observations. In addition, the weight assigned to each obser-

vation depends on the amount of information it contains. As a result, even a censored

observation could be assigned a full weight of one provided that it is deemed to be

sufficiently ‘informative’ at the given level τ , i.e. F0(Ci|Xi) > τ.

• The LBT weight of Kong et al. (2013) is susceptible to heavy influence from big values

of T for which G(T |X) is close to one. This problem will be further exacerbated when

G(.|.) is unknown and thus replaced by an estimator, for example the well known K-M

estimator, which in general suffers from weak performance towards the right tail of the

distribution due to the small number of observations being available in that area.

• The weights for uncensored observations are always one for the RDW scheme, while

they always need to be estimated with the LBT estimator.

• The LBT weight is smooth with respect to G(.|.), which makes its asymptotic study

relatively straightforward from a theoretical point of view. For example, to evaluate

the error incurred in the weight by replacing G(.|.) with a preliminary estimate Ĝ(.|.):

1

1−G(Yi|Xi)
− 1

1− Ĝ(Yi|Xi)
=

G(Yi|Xi)− Ĝ(Yi|Xi)

[1−G(Yi|Xi)][1− Ĝ(Yi|Xi)]
, (5)

all we need is the asymptotic expression for G(Yi|Xi) − Ĝ(Yi|Xi); evaluation of the

congregated error, i.e. the summation of terms like (5) over i = 1, · · · , n, then readily

follows from an application of standard results of U-processes. However, the above

technique is not applicable to the RDW weight because the weight itself is not smooth.

We tackle this problem by employing key techniques of empirical process, such as the

stochastic equi-continuity properties of non-smooth function of preliminary (nonpara-

metric) estimators.

To summarize, the theoretical study of the RDW estimator is more challenging compared

to that of Kong et al. (2013). This is clearly manifested in the proof of Proposition 5 in

the supplement, which could be compared with that of Lemma A.2 in Kong et al. (2013).

Nevertheless, the additional complexity is justified since it helps confirm our conjecture that

the RDW weight does generally lead to better estimation efficiency; see Corollary 1 in Section

4 in particular. Another interesting theoretical discovery of this paper is that, in a nonpara-

metric setting, the effect of substituting a generalized K-M estimator for the unknown F0(.|.)
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can take different forms depending on the convergence rate of the K-M estimator. A phe-

nomenon that does not exist in a parametric setup, and in the case of a global polynomial

model, however, our results do coincide with those in a parametric setup considered in Wang

et al. (2009).

The remainder of this paper is organized as follows. Section 2 describes the proposed

RDW-based estimation method. Section 3 contains a list of regularity conditions and also

some notations. We provide in Section 4 the main theoretical results and demonstrate in Sec-

tion 5 their applications in the research area of dimension reduction. A small scale numerical

study is given in Section 6, in which the numerical performance of several competing methods

is examined, including the one by Kong et al. (2013). Additional lemmas, propositions and

all the proofs are provided online at Cambridge Journals Online (journals.cambridge.org/ect)

in supplementary material to this article.

2 The estimation method

Suppose we have i.i.d. copies ξi = (Yi,Xi, di), i = 1, · · · , n, of ξ = (Y,X, d) generated

according to (1) and (2). Our interest is in the the estimation of Qτ (.) and its partial

derivatives. For any given τ ∈ (0, 1) and x in the compact support D of X, the local

polynomial smoothing estimator of Qτ (x) is based on the assumption that there exists some

positive integer k, such that in a neighbourhood of x, Qτ (.) is smooth enough to have partial

derivatives up to order k. Consequently, for X close to x, Qτ (X) can be approximated by its

k−th order Taylor series expansion:

Qnτ (X)
def
= Qτ (x) +

∑
1≤[r]≤k

DrQτ (x)

r!
(X− x)r, (6)

where r = (r1, · · · , rp) denotes an arbitrary p−dimensional vector of nonnegative integers,

Dr denotes the differential operator, ∂[r]/∂xr11 · · · ∂x
rp
p , [r] =

∑p
i=1 ri, r! =

∏p
i=1 ri!, xr =∏p

i=1 x
ri
i with the convention that 00 = 1. Let A = {r : [r] ≤ k} and n(A) = ](A),

its cardinality. In the absence of censoring, the local polynomial estimates of the vector

[DrQτ (x), r ∈ A] are obtained via the minimization of the function below with respect to

β = (βr)r∈A ∈ Rn(A):
n∑
i=1

Kδn(Xix)ρτ (Ti − β>µn(Xix)), (7)

where Xix = Xi−x, µn(x) = [δ
−[r]
n xr, r ∈ A], a n(A)× 1 vector and Kδn(.) = K(./δn), with

K(.) usually chosen to be some symmetric density function in Rp and a smoothing parameter
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δn → 0 as n → ∞. For more details on this estimation method, please refer to Chaudhuri

(1991), Chaudhuri, Doksum and Samarov (1997) and Kong et al. (2010).

We now describe how to combine this idea with the RDW weighting scheme for estimation

with censored data. Let us start with the ideal situation where F0(.|.) is known. In this

situation, we write

wi0(τ) ≡ wi(τ |F0) =

{
1, di = 1 or F0(Ci|Xi) > τ ;
τ−F0(Ci|Xi)
1−F0(Ci|Xi)

, di = 0 and F0(Ci|Xi) < τ.

For any fixed x ∈ Rp, estimates of [DrQτ (x), r ∈ A] could then be obtained by minimizing

the following weighted function with respect to β ∈ Rn(A):
n∑
i=1

Kδn(Xix)
[
wi0(τ)ρτ (Yi − β>µn(Xix)) + (1− wi0(τ))ρτ (Y +∞ − β>µn(Xix))

]
, (8)

where Y +∞ could be any value that is large enough to exceed all β>µn(Xix), i = 1, · · · , n.

Since the sub-gradient of (8) only depends on the signs of the residuals, we may simply set

Y +∞ = +∞; in practice one could choose Y +∞ = 100 max{Y1, · · · , Yn} as suggested in Wang

et al. (2009). Since 0 < τ < 1, ρτ (s)→∞ as |s| → ∞, β̂nτ (x) always exists. Propositions 1

and 2 in the supplementary material discuss the implicit form of the solution(s) to problem

(8), as well as the sufficient and necessary conditions for a unique solution.

With F0(.|.) being unknown, a preliminary nonparametric estimator F̂n(.|.) can be used

as a substitute for F0(.|.) in the definition of wi0(τ). Let us write wi(τ |F̂n) as win(τ). Con-

sequently, for any x ∈ D, τ ∈ (0, 1), an estimate of the n(A)× 1 vector

βnτ (x)
def
= [δ[r]n D

rQτ (x)/r!, r ∈ A]

is thus given by the minimum of

n∑
i=1

Kδn(Xix)
[
win(τ)ρτ (Yi − β>µn(Xix)) + (1− win(τ))ρτ (Y +∞ − β>µn(Xix))

]
, (9)

as a function of β ∈ Rn(A). Denote it as β̂nτ (x).

A commonly used estimator of F0(.|Xi) is the generalized K-M estimator (Gonzalez-

Manteigaa and Cadarso-Suarez, 1994) defined as

F̂KM (t|x) = 1−
n∏
j=1

{
1− Bnj(x)

n∑
k=1

I(Yk ≥ Yj)Bnk(x)

}bj(t)
, (10)

where bj(t) = I(Yj ≤ t, dj = 1), and {Bnk(x), k = 1, · · · , n} is a sequence of non-negative

weights adding up to 1. In Wang et al. (2009), the Nadaraya-Waston type of weights (local
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constant weights) were used, with a univariate X in mind. For a multivariate X, the so-

called ‘curse of dimensionality’ calls for a greater smoothing parameter. Therefore, to keep

the approximation bias under control we need to engage ‘higher order’ weights, such as the

local polynomial ‘equivalent kernel/weight’ (Fan and Gijbels, 1996), possibly derived from a

different kernel density function K̃(.) in Rp. For some positive integer κ1 that depends on

the smoothness of F0(t|x) as a function of x, let Ã = {r : [r] ≤ κ1} , hn → 0 (n→∞), which

is another smoothing parameter. For any x ∈ Rp, write µ̃n(x) = [h
−[r]
n xr, r ∈ Ã], and

Bnk(x) = h−pn e1
>M−1n (x)µ̃n(Xkx)K̃hn(Xkx), k = 1, · · · , n, amy (11)

where e1 is the n(Ã)× 1 vector (1, 0, · · · , 0)>, and

Mn(x) =
1

nhpn

n∑
k=1

K̃hn(Xkx)µ̃n(Xkx){µ̃n(Xkx)}>.

Note that as a distribution function, F̂KM (t|x) is not smooth; in fact it has jumps with

a magnitude of Bni(x)/{1 − Ĝn(Yi|x)} at points t = Yi if di = 1, where Ĝn(.|.) is the

generalized K-M estimator of G(.|.); see also Gonzalez-Manteigaa et al. (1994). This could

cause problems since, it requires among other things that the preliminary estimator should be

smooth enough so that one could apply empirical process results regarding the stochastic equi-

continuity properties of the non-smooth objective function of preliminary (nonparametric)

estimators. We therefore suggest a smoothing procedure to be carried out on F̂KM (.|x) to

obtain the following smoothed generalized K-M estimator:

F̂Sn (t|x) =

∫
F̂KM (s|x)K̄((s− t)/h1n)/h1nds, (12)

where K̄(.) is a univariate symmetric kernel function and h1n is a smoothing parameter. Since

F̂KM (s|x) is absolutely integrable, it is a standard result in real analysis that if K̄(.) infinitely

differentiable, such the normal kernel, then so is F̂Sn (t|x) with respect to t.2 Therefore, from

this point on, β̂nτ (x) will stand for the minimum of (9), where the weight function win(τ) is

derived from this smoothed generalized K-M estimator F̂Sn (.|x). Nevertheless, we would like

to point out that this smoothing of the K-M estimator is purely for technical purposes; our

experience suggests that numerically, it makes little difference, if any, and it is not sensitive

to the choice of the smoothing parameter h1n.
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3 Notations and assumptions

Let q be a positive integer and let χ be a bounded set in Rq. For some constants M > 0 and

s > 0, we will say that a function m(.) : Rq → R belongs to CsM (χ), if

max
[r]≤bsc

sup
z∈χ
|Drm(z)|+ max

[r]=bsc
sup

z,z′∈χ

|Drm(z)−Drm(z′)|
‖z− z′‖s−bsc

≤M,

where r = (r1, · · · , rq) is a vector of non-negative integers, bsc denotes the greatest integer

that is (strictly) smaller than s, and ‖.‖ stands for the Euclidean norm of a vector. CsM (χ) is

essentially the class of functions on a bounded set χ in Rq, with uniformly bounded partial

derivatives up to order bsc, whose highest partial derivatives are Lipschitz of order s − bsc.

Such a class of functions is of particular interest in empirical processes: the ε−covering num-

bers with respect to the supremum norm grow sufficiently slowly for the empirical processes

indexed by this class of functions to possess some ‘uniform’ asymptotic properties (van der

Vaart and Wellner, 1996). More details on this can be found in the proof of Proposition 5 in

the supplementary material.

For any t ∈ [−1, 1]p, let denote by µ(t), the n(A)×1 vector [tr : r ∈ A]. We can therefore

define the following

Σ(A) =

∫
[−1,1]p

K(t)µ(t)µ(t)>dt, γ(A) =

∫
t∈[−1,1]p

µ(t)dt;

Σ(Ã) is similarly defined. Note that the vectors A and Ã have been defined in paragraphs

preceding equations (7) and (11), respectively. It is assumed throughout this paper that

both Σ(A) and Σ(Ã) are invertible. Let fX(.) be the probability density function of X.

For any x ∈ Rp, let f0(.|x) and g(.|x) denote the probability density functions of T and

C, respectively, conditional on X = x. We make the following assumptions, in which the

constants sk, k = 1, · · · , 4, are to be specified later, and M stands for a generic positive

constant whose value may vary from assumption to assumption.

[A1] X has a compact support D ⊂ Rp and fX(.) ∈ Cs1M (D), for some s1 > 0.

[A2] There exist some s2 > 0 and 0 < τ∗ < 1/2, such that the quantile function Qτ (.) ∈

Cs2M (D), for all τ ∈ [τ∗, 1− τ∗].

[A3] The kernel functions K(.) is a symmetric probability density function on Rp with finite

second moments and bounded first order derivatives.

[A4] For the censoring variable C, the conditional distribution function G(Qτ (x)|x) is uni-

formly bounded away from one for all x ∈ D and τ ∈ [τ∗, 1 − τ∗]; G(t|x) is also

Holder-continuous over {(x, t) : x ∈ D, Qτ∗(x) < t < Q1−τ∗(x)}.
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[A5] There exists some s3 > 0, such that F0(t|x), as a function of x, belongs to Cs3M (D),

uniformly in t within the region {(x, t) : x ∈ D, Qτ∗(x) < t < Q1−τ∗(x)}; f0(t|x) is

Holder continuous in t ∈ [Qτ∗(x), Q1−τ∗(x)] uniformly for all x ∈ D, and f0(Qτ (x)|x)

is uniformly bounded away from zero for all x ∈ D and τ ∈ [τ∗, 1− τ∗].

[A6] K̃(.) is a symmetric probability density function on Rp with finite second moments and

bounded first order derivative; the kernel function K̄(.) ∈ Cs4M ([0, 1]) for some s4 > 0.

[A7] The smoothing parameters hn, h1n are chosen such that hn → 0, h1n → 0, nhpn/ log n→

∞, nhp+4s3/3
n / log n <∞ and h21n/h

s3
n <∞.

[A1]-[A3] are standard assumptions in nonparametric polynomial smoothing. Specifically,

under [A2] with k = bs2c and small enough δn, for any given x ∈ D and t ∈ [−1, 1]p,

the difference between Qτ (x + tδn) and the corresponding kth order Taylor series expansion

around x, we have

Qnτ (x + tδn,x) = β>nτ (x)µ(t), (13)

and

r(tδn,x)
def
= Qτ (x + tδn)−Qnτ (x + tδn,x) = O(δs2n ), (14)

uniformly in t ∈ [−1, 1]p and x ∈ D. [A4] and [A5] together ensure the identifiability of the

model; this is a nonparametric extension of condition A3 in Wang et al. (2009), where they

studied the estimation of parameter βτ in linear CQR at a prescribed level τ . Their condition

A3 is such that for β in the neighbourhood of βτ , E[XX>f0(X
>β|X){1−G(X>β|X)}] must

be positive definite. A sufficient but not necessary condition for this to be true is that both

f0(X
>β|X) and 1−G(X>β|X) are uniformly bounded away from zero for X in some subset

of its support D with positive measure.

[A6] is imposed so that F̂Sn (.|.) ∈ Cs4M ((0, 1)), a condition as discussed in Section 1 required

to ease the study of the asymptotics of the estimators obtained from minimizing (9), where

the weights are derived from this F̂Sn (.|.). [A5] and [A7] are necessary for the asymptotic

representation of the generalized K-M estimator; see Lemma 1 below for more details.

4 Convergence rate and asymptotic representation

We first present some results concerning the smoothed generalized K-M estimator F̂Sn (.) of

(12). Let τn = (nδpn/ log n)−1/2 and τ̃n = (nhpn/ log n)−1/2.
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Lemma 1. Under Assumptions [A5] - [A7] with κ1 = bs3c, we have with probability one,

F̂Sn (t|x)− F (t|x) = O(τ̃n), (15)

F̂Sn (t|x)− F (t|x) = 1
n

n∑
k=1

B̃hn(Xk;x)ϕ(Yk, dk, t,x) +O(τ̃
3/2
n ) (16)

uniformly in x ∈ D and t, where for k = 1, · · · , n,

B̃hn(Xk;x) = h−pn e1
>Σ−1(Ã)µ̃n(Xkx)K̃hn(Xkx)/fX(x),

ϕ(Yk, dk, t,x) = {1− F0(t|x)}
[ I(Yk ≤ t, dk = 1)

{1− F0(Yk|x)}{1−G(Yk|x)}

−
∫ min(Yk,t)

0

f0(s|x)ds

{1− F0(s|x)}2{1−G(s|x)}

]
.

Regarding the uniform Bahadur type representation for β̂nτ (x), we have

Theorem 1. Suppose [A1]- [A7] hold with sj > 0, j = 1, 2, 3, 4, α = (p + 1)/s4 < 1,

k = bs2c, and the smoothing parameters δn, hn are chosen such that δs2n /τn < ∞ and

τ̃1−αn /(δ2pαn log n) <∞. Then

β̂nτ (x)− βnτ (x) =
Σ−1nτ (x)

nδpn

∑
i

Kδn(Xix)µn(Xix)
[
wi0I{Yi ≤ Qnτ (Xi,x)} − τ

]
−(1− τ)

Σ−1nτ (x)

nδpn

n∑
j=1

Ei

[
B̃hn(Xj ;Xi)Kδn(Xix)µn(Xix)Φ(Xi, Yj , dj |τ)

]
+Rn(x|τ), (17)

where

Rn(x|τ) = Op

(
τ3/2n + τn(δpαn log n/τ̃1−αn )−1/2

)
,

uniform in x ∈ D and τ ∈ [τ∗, 1− τ∗],

Σnτ (x) = Ei

[
{1−G(Qτ (Xi)|Xi)}f0(Qτ (Xi)|Xi)Kδn(Xix)µn(Xix)µn(Xix)>

]
,

Φ(Xi, Yj , dj |τ) = E
[I(Ci ≤ Qτ (Xi))

1− F0(Ci|Xi)
ϕ(Yj , dj , Ci,Xi)

∣∣∣Xi

]
−{ g

f0
}(Qτ (Xi)|Xi)ϕ(Yj , dj , Qτ (Xi),Xi),

Ei(.) stands for expectation taken with respect to Xi, and the expectation in the definition of

Φ(Xi, Yj , dj |τ) is with respect to the conditional distribution of Ci given Xi.

The LBT estimator of Kong et al. (2013), denoted as ĉnτ (x), is defined as the minimum

of the following empirical objective function

n∑
i=1

di

1− Ĝ(Yi|Xi)
Kδn(Xix)ρτ (Yi − c>µn(Xix)), (18)
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with respect to c ∈ Rn(A), where Ĝ(.|.) is the generalized K-M estimator of G(.|.). Its Bahadur

representation as given in Theorem 4.2 of Kong et al. (2013) is such that

ĉnτ (x)− βnτ (x) =
Σ̃−1nτ (x)

nδpn

∑
i

di
1−G(Yi|Xi)

Kδn(Xix)µn(Xix)
[
I(Yi ≤ Qnτ (Xi,x))− τ

]
−Σ−1nτ (x)

nδpn

∑
j

Ei

[
B̃hn(Xj ;Xi)Kδn(Xix)µn(Xix)Tn(x, ζi, ζj)

]
+Rn(x|τ), (19)

where Ei(.) stands for expectation taken with respect to (Xi, Yi), and

Σ̃nτ (x) = Ei

[
f0(Qτ (Xi)|Xi)Kδn(Xix)µn(Xix)µn(Xix)>

]
,

Tn(x, ζi, ζj |τ) = [I(Ti ≤ Qnτ (Xi,x))− τ ]ϕ(Yj , 1− dj , Yi,Xi).

Compare (19) with (17) and we could come to the following conclusions.

(A) In either representation, the first term, referred to as the ‘staple’ term, stands for the

leading stochastic error of the estimator when F0(.|.) is known. The difference between

the two ‘staple’ terms reflects the difference between the general principles based on

which the respective target functions are defined and in particular, the way the two

types of weights are formed.

(B) The second term in either representation is referred to as the ‘correction’ term. Since

E[Φ(Xi, Yj , dj |τ)|Xi] = 0, it reflects the asymptotic error induced by a preliminary

nonparametric (K-M) estimator being used as a substitute for the true but unknown

conditional distribution function when the latter is unavailable. It converges at the same

speed as the corresponding ‘staple’ term or the preliminary K-M estimator, whichever

is the higher; see (A.34)−(A.36) in the supplementary material.

These two observations facilitate the study of the asymptotic variance (‘efficiency’) of these

two competing estimators. Apparently, compared to the ‘staple’ term, the ‘correction’ term in

either presentation has a more complicated form yet is comparatively ‘negligible’, provided

that the preliminary K-M estimator converges fast enough. For illustration purposes, our

focus will be on this special case where for both estimators the ‘staple’ term dominates over

other terms in the same representation.

Corollary 1. Suppose conditions are all met for both (17) and (19) to hold true with

13



δn = o(hn). Then we have

Cov(βnτ (x)) =
Σ−1(A)]Σ̃(A)Σ−1(A)

δpnf20 (Qτ (x)|x)
{1−G(Qτ (x)|x)}−2{τ(1− τ)[1−G(Qτ (Xi)|Xi)]

+(1− τ)2E
[
I(Ci ≤ Qτ (Xi))

F0(Ci|Xi)

1− F0(Ci|Xi)

]
}(1 + o(1))

≤ Σ−1(A)]Σ̃(A)Σ−1(A)

δpnf20 (Qτ (x)|x)

τ(1− τ)

{1−G(Qτ (x)|x)}2
,

Cov(ĉnτ (x)) =
Σ−1(A)]Σ̃(A)Σ−1(A)

δpnf20 (Qτ (x)|x)
E
{ [τ − I(T ≤ Qτ (x))]2

1−G(T |x)

}
(1 + o(1)),

where Σ̃(A) =
∫
K2(t)µ(t)µ(t)>dt.

It is immediately clear that the covariances of these two estimators are given by the same

(positive definite) matrix but multiplied by different constants: in the case of the RDW

estimator, this constant is bounded from above by τ(1− τ)/{1−G(Qτ (x)|x)}2; while for the

LBT estimator, the constant given by E{[τ − I(T ≤ Qτ (x))]2/(1 − G(T |x))}, assuming it

is finite. In fact, the proof of (19) is done under this very assumption, namely that E[(1 −

G(T |x))−1] < ∞which imposes restrictions on f0(t|x) and G(t|x) over the entire domain,

especially near the right tail: as t increases, f0(t|x) must decrease more quickly compared to

the rate at which 1 − G(t|x) decreases. In contrast, for the RDW estimator, condition [A4]

concerns only G(t|x) and with t confined within the interval [Qτ∗(x), Q1−τ∗(x)].

We further have the following remarks with regards to the results given in Theorem 1.

Remark 1. When projected to a parametric set-up, the result is consistent with what is given

Wang et al. (2009), where the ‘staple’ term is of orderOp(n
−1/2), the K-M estimator converges

at a nonparametric whence slower rate and the estimator is therefore root-n consistent. We

would also like to point out that despite the fact that in some cases the ‘correction’ term is

negligible relative to the ‘staple’ term, we choose to keep this term visible in the representation

instead of indiscriminately sweeping it into the remainder term Rn(x). This is because in

some applications which involve averaging β̂nτ (x) over x(∈ D), such as the average derivative

estimator (Chaudhuri et al., 1997), both terms will be of order Op(n
−1/2) and thus play

equally important roles in the asymptotics of the resulting estimator. Please refer to Section

5.1 of Kong et al. (2013) for more details on such examples.

Remark 2. If the smoothing parameter δn is allowed to go to∞, the kernel weight (nδpn)−1Kδn(.)

assigned to all observations are eventually identical; since they must also add up to one

(asymptotically at least), each observation must be given an equal weight of n−1. It thus

14



reduces to the case where Qτ (.) is indeed a polynomial function, i.e. Qτ (.) ≡ Qnτ (.,x).

The above result consequently coincides with that in Wang et al. (2009) for linear censored

quantile regression.

Remark 3. As remarked earlier, the ‘correction’ term has expectation zero and a variance at

most comparable to that of the ‘staple’ term. Therefore, the order of the ‘optimal’ bandwidth

which minimizes the mean square error, either pointwise or globally, solely depends on the

‘staple’ term, which has a variance of order O((nδpn)−1). As for its expectation, it follows

from equality (A.18) in the supplementary material that

δ−pn E{Kδn(Xix)µn(Xix)[wi0(τ)I(Yi ≤ Qnτ (Xi,x))− τ ]}

= δ−pn E{Kδn(Xix)µn(Xix)[1−G(Qτ (Xi)|Xi)]f0(Qτ (Xi)|Xi){Qnτ (Xi,x)−Qτ (Xi)}}

+O(δ2s2n ),

where under [A2] and [A6], the first term on the right hand side is of order O(δs2n ) uniformly

in x ∈ D. Thus the optimal bandwidth is of order n−1/(p+2s2), consistent with what is already

known in local polynomial smoothing (Masry, 1996).

Remark 4. In applications, we have control over the remainder term through proper choice

of hn and δn. For example, if the generalized K-M estimator converges at a comparable

rate (i.e., τ̃n = O(τn)), then through the use of an infinitely smooth kernel K̄(.) in (12) (i.e.

s4 = ∞), Rn(.) in (17) would be of an order infinitely close to Op((nδ
p
n/ log n)−3/4), the

optimal rate according to Kong et al. (2010) with uncensored data.

5 Applications to semi-parametric CQR models

Applications of uniform Bahadur representation like that given in Theorem 1 include but

are not limited to: (a) estimation of semiparametric models where the parameters of interest

are explicit or implicit functionals of nonparametric regression functions and their deriva-

tives, such as the Average Derivative Estimator (ADE) for single-index quantile regression

models (Ichimura and Lee, 2010; Kong and Xia, 2012) with censored data; (b) estimation of

structured nonparametric models like the additive models (Linton, Sperlich and Van Keile-

gom, 2007; Horowitz and Lee, 2005). Applying standard results on U-processes like those in

Arcones (1995), Kong et al. (2013) derived the asymptotics of these estimation procedures

based upon the LBT estimator defined as in (18). Parallel results could be established in a

similar manner if the RDW estimator is used in place of the LBT estimator. Again, we would

like to emphasize that since the LBT estimator is likely to have a much larger variance than
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the RDW estimator as implied by Corollary 1, estimation procedures based on the RDW

estimator will again be more ‘efficient’ than their counterparts based on the LBT estima-

tor. For the rest of this section, we will demonstrate another use of the uniform Bahadur

representation for the purpose of sufficient dimension reduction (SDR) in regression.

The paradigm of SDR combines the idea of dimension reduction with the concept of

sufficiency, and aims to generate a lower-dimensional summary plot without appreciable loss

of information. Consider the following definition of SDR in regression formulated in Cook

(2007), where T and X stand for the usual scalar dependent variable and the vector of

covariates, respectively. Let B be a p× q (q ≤ p) (constant) orthonormal matrix. The

space S(B) spanned by the columns of B is said to be the SDR subspace if the conditional

distribution F (.|B>X) of T given B>X is identical to that of T given X, i.e.

F0(.|X) = F (.|B>X) almost surely. (20)

In other words, B>X captures all the information relevant to regressing T on X. Under quite

general conditions, the minimal SDR subspace exists and is given by

S0 = ∩{S(B) : model (20) holds for B}.

We refer to it as the central subspace (CS) and its orthogonal basis β01, · · · , β0q as the

dimension reduction directions. Let B0 = (β01, · · · , β0q) and consequently we have

F0(.|X) = F (.|B>0 X) almost surely. (21)

For more detail and existing research on dimension reduction, we refer to Cook (2007) and

the references therein.

The idea behind the composite quantile approach to dimension reduction of Kong and

Xia (2014) is as follows. Consider the following outer-product of gradients (OPG) matrix

associated with level τ :

Σ(τ) = E{∇Qτ (X)[∇Qτ (X)]>}, where ∇Qτ (X) =
∂Qτ (X)

∂X
.

What then follows from identity (21) is that for any τ ∈ (0, 1), S(Σ(τ)) ⊆ S(B0). Indeed, it

is easy to come up with examples where the above inequality holds strictly for at least one

τ ∈ (0, 1). This implies that OPG matrices evaluated at any finite number of quantiles may

not always be able to reveal the full picture about the CS; what is needed is the so-called

composite OPG matrix:

Σ =

∫ 1

0
Σ(τ)dτ ; (22)
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indeed it is proved that S(Σ) = S(B0) = S0. Thus the search for the CS boils down to

the estimation of matrix Σ, which in turn translates into the problem of estimating ∇Qτ (x)

for any given τ and x = Xi, i = 1, · · · , n. Suppose ∇̂Qτ (x) denotes a certain estimate, an

estimate of Σ could then be formed as

Σ̂ =

∫ 1

0
n−1

n∑
j=1

∇̂Qτ (Xj){∇̂Qτ (Xj)}>dτ. (23)

Exactly the same line of arguments would apply in describing a composite quantile approach

to dimension reduction for censored data. We already discussed in Section 2 how to obtain

an estimator for the gradient vector ∇Qτ (.). Now what makes a representation like (17)

particularly relevant in this context is that it could be simply plugged into (23) in place of

∇̂Qτ (.) and the asymptotics of Σ̂ could be subsequently established in a way similar to that

in Kong and Xia (2014). Note that this plug-in of representations like (17) into an expression

which involves integration over τ and the summation across x is ‘legitimate’ only because we

have a ‘uniform’ control over the remainder term, i.e. it converges to zero at a speed which

is uniform both in x and in τ .

6 Simulation study

We examine the finite sample performance of the newly proposed RDW estimator, the LBT

estimator of Kong et al. (2013), and finally the naive method where Yi takes the place of Ti

as if no censoring has occurred.

We will use the Epanechnikov kernel. As for bandwidth selection, regularity conditions

in Theorem 1 provide general guidelines as to the speed at which the bandwidths should

go to zero and in particular, about how the choice of δn also affects the choice of hn. To

reduce the computational effort, we choose δn by applying the ‘rule-of-thumb‘ of Yu and

Jones (1999), which relates the optimal bandwidth for conditional quantile regression to that

for conditional mean regression via the following identity

hτ = hmean{τ(1− τ)/φ(Φ−1(τ))}1/5,

where hmean is the optimal bandwidth for local linear smoothing estimator in conditional

mean regression, and hτ is that for quantile regression at level τ . Functions φ(.) and Φ(.)

are respectively the probability density and distribution functions of the standard normal

distribution.
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Consider the following two (log-transformed) survival models

Model (A): T = X1X2 + (0.1 +X2
1 )1/2ε

Model (B): T = exp{(X1 −X2)/
√

2}+ (0.1 +X3)ε.

In both models, T is subject to censoring from random variable

C = X1 +X2 + c+ ε,

where ε ∼ N(0, 1) is independent of the covariate X = (X1, X2, X3)
>, and c is a constant

which dictates the expected censoring rate P (T > C).

For model (A), the conditional τth quantile of T is obviously given by

Qτ (X) = X1X2 + zτ

√
0.1 +X2

1 ,

where zτ is the τth quantile of N(0, 1). The covariates are generated according to X1 =

U0 + U1, X2 = U0 + U2, where U0, U1 and U2 are independent uniform(-1.5,1.5) random

variables. We calculate estimates of Qτ (ui, uj) for all possible combinations of (ui, uj) with

ui, uj ∈ {−2,−1.6, · · · , 1.6, 2} and define the estimation error as

11∑
i=1

11∑
j=1

|Qτ (ui, uj)− Q̂τ (ui, uj)|/121.

A summary of the simulation results for this model is given in Table 1.

For model (B), X1 and X2 are both set as N(0, 1) with corr(X1, X2) = 0.5 and X3 ∼

Uniform(0, 1), independent of (X1, X2). Since the conditional quantile function is given by

Qτ (X) = exp{(X1 −X2)/
√

2}+ (0.1 +X3)zτ ,

the average gradient vector evaluated at quantile level τ is thus

E
[∂Qτ (X)

∂X

]
= (c1,−c1, zτ )>

where c1 = E[exp{(X1 − X2)/
√

2}]/
√

2. Consequently, θτ = (c1,−c1, zτ )> /
√

2c21 + z2τ is

the direction of the corresponding average gradient vector and in this case we define the

estimation error as

(1− |θ>τ ∗ θ̂τ |)1/2.

A summary of the simulation results for this model is given in Table 2.

We could draw the following conclusions based on these simulation results. Within any

given method, there isn’t any noticeable disparity among its performance across different
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Table 1. Average estimation errors [ and their interquartile range] based
on 100 simulation runs, for various combinations of quantile
level τ , sample size n and censoring rate: Model (A)

censoring Methods
n rate τ Naive LBT RDW

0.30 1.3210[0.4086] 1.0930[0.3679] 0.8474[0.2201]
60% 0.50 1.3774[0.4649] 1.1894[0.3154] 0.8901[0.2634]

0.80 1.6175[0.4624] 1.5885[0.3580] 1.2875[0.3063]
0.30 0.9924[0.2393] 0.8803[0.1955] 0.7508[0.1851]

200 40% 0.50 1.0069[0.2334] 0.9446[0.2359] 0.7804[0.1944]
0.80 1.1948[0.2292] 1.2136[0.2033] 0.9963[0.2232]
0.30 0.7495[0.1692] 0.7184[0.1586] 0.6661[0.1738]

15% 0.50 0.7563[0.1613] 0.7379[0.1689] 0.6554[0.1927]
0.80 0.8719[0.1731] 0.8950[0.1775] 0.7726[0.1501]
0.30 1.2187[0.2565] 0.9233[0.2223] 0.7307[0.1962]

60% 0.50 1.2721[0.2655] 1.0035[0.2280] 0.7891[0.1671]
0.80 1.4934[0.2511] 1.3479[0.2438] 1.1112[0.2347]
0.30 0.9111[0.1438] 0.7821[0.1667] 0.6589[0.1598]

500 40% 0.50 0.9404[0.1660] 0.8472[0.2139] 0.6696[0.1938]
0.80 1.0915[0.1833] 1.0401[0.1686] 0.7577[0.2007]
0.30 0.6626[0.1171] 0.6192[0.1494] 0.5720[0.1439]

15% 0.50 0.6763[0.1335] 0.6334[0.1534] 0.5507[0.1492]
0.80 0.7474[0.1407] 0.7301[0.1459] 0.5982[0.1683]

Table 2. Average estimation errors [ and their interquartile range] based
on 100 simulation runs, for various combinations of quantile
level τ , sample size n and censoring rate: Model (B)

censoring Methods
n rate τ Naive LBT RDW

0.30 0.2836[0.1618] 0.2369[0.1679] 0.1503[0.1363]
60% 0.50 0.3394[0.2078] 0.2865[0.1668] 0.1780[0.1315]

0.80 0.3180[0.2211] 0.3127[0.2376] 0.1679[0.1501]
0.30 0.1996[0.1341] 0.1576[0.1193] 0.1114[0.0829]

200 40% 0.50 0.2173[0.1679] 0.1902[0.1616] 0.1366[0.1116]
0.80 0.2045[0.1452] 0.1942[0.1372] 0.1212[0.0886]
0.30 0.1070[0.0745] 0.0941[0.0663] 0.0886[0.0801]

15% 0.50 0.1067[0.0886] 0.1019[0.0838] 0.1004[0.0823]
0.80 0.1104[0.0981] 0.1096[0.0868] 0.0899[0.0720]
0.30 0.2906[0.0925] 0.2180[0.1286] 0.1113[0.1164]

60% 0.50 0.3383[0.1564] 0.2424[0.1824] 0.1024[0.0846]
0.80 0.2544[0.1435] 0.2313[0.1904] 0.1105[0.0677]
0.30 0.1883[0.0916] 0.1239[0.0896] 0.0683[0.0656]

500 40% 0.50 0.2059[0.1398] 0.1440[0.1171] 0.0823[0.0810]
0.80 0.1451[0.0902] 0.1270[0.0928] 0.0739[0.0619]
0.30 0.0951[0.0737] 0.0724[0.0671] 0.0603[0.0508]

15% 0.50 0.0842[0.0709] 0.0748[0.0596] 0.0674[0.0627]
0.80 0.0826[0.0461] 0.0788[0.0583] 0.0650[0.0587]
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quantile levels, although in the case of the LBT estimator, when the sample size is small, its

performance deteriorates dramatically as τ increases from 0.5 to 0.8. This could be attributed

to the fact the LBT estimator is more susceptible to the accuracy of the preliminary K-M

estimators, as discussed in Section 1. The second observation is that as the sample size

increases or as the censoring rates decreases, we see a reduction in the estimation error for

all three estimation methods, which is just as expected. Across the competing methods, the

LBT estimator fares better than the naive estimation procedure in most cases, although to

a lesser extent in the case of model (A). The RDW estimator outperforms the other two by

a great margin in all cases, more so when the censoring rate is high. It is also the most

stable, judging by the interquartile range of the estimation error. This is also in line with

the observations by Wang et al. (2009) in linear CQR models.

Notes

1Note that the conditional independence does not imply unconditional independence and vice versa; see,
for example, Phillips (1988) and Su and White (2008). Here we assume the conditional independence simply
because it is more common in practice.

2A detailed proof can be found at www.math.lsa.umich.edu/∼mityab/teaching/m395f10/solutions9.pdf,
pp. 5, Problem 9.8.
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