30 research outputs found

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Genome-Scale Identification Method Applied to Find Cryptic Aminoglycoside Resistance Genes in Pseudomonas aeruginosa

    Get PDF
    BACKGROUND:The ability of bacteria to rapidly evolve resistance to antibiotics is a critical public health problem. Resistance leads to increased disease severity and death rates, as well as imposes pressure towards the discovery and development of new antibiotic therapies. Improving understanding of the evolution and genetic basis of resistance is a fundamental goal in the field of microbiology. RESULTS:We have applied a new genomic method, Scalar Analysis of Library Enrichments (SCALEs), to identify genomic regions that, given increased copy number, may lead to aminoglycoside resistance in Pseudomonas aeruginosa at the genome scale. We report the result of selections on highly representative genomic libraries for three different aminoglycoside antibiotics (amikacin, gentamicin, and tobramycin). At the genome-scale, we show significant (p<0.05) overlap in genes identified for each aminoglycoside evaluated. Among the genomic segments identified, we confirmed increased resistance associated with an increased copy number of several genomic regions, including the ORF of PA5471, recently implicated in MexXY efflux pump related aminoglycoside resistance, PA4943-PA4946 (encoding a probable GTP-binding protein, a predicted host factor I protein, a delta 2-isopentenylpyrophosphate transferase, and DNA mismatch repair protein mutL), PA0960-PA0963 (encoding hypothetical proteins, a probable cold shock protein, a probable DNA-binding stress protein, and aspartyl-tRNA synthetase), a segment of PA4967 (encoding a topoisomerase IV subunit B), as well as a chimeric clone containing two inserts including the ORFs PA0547 and PA2326 (encoding a probable transcriptional regulator and a probable hypothetical protein, respectively). CONCLUSIONS:The studies reported here demonstrate the application of new a genomic method, SCALEs, which can be used to improve understanding of the evolution of antibiotic resistance in P. aeruginosa. In our demonstration studies, we identified a significant number of genomic regions that increased resistance to multiple aminoglycosides. We identified genetic regions that include open reading frames that encode for products from many functional categories, including genes related to O-antigen synthesis, DNA repair, and transcriptional and translational processes

    Holocene geochemical footprint from Semiarid alpine wetlands in southern Spain

    Get PDF
    Here we provide the geochemical dataset that our research group has collected after 10 years of investigation in the Sierra Nevada National Park in southern Spain. These data come from Holocene sedimentary records from four alpine sites (ranging from ∼2500 to ∼3000 masl): two peatlands and two shallow lakes. Different kinds of organic and inorganic analyses have been conducted. The organic matter in the bulk sediment was characterised using elemental measurements and isotope-ratio mass spectrometry (EA-IRMS). Leaf waxes in the sediment were investigated by means of chromatography with flame-ionization detection and mass spectrometry (GC-FID, GC-MS). Major, minor and trace elements of the sediments were analysed with atomic absorption (AAS), inductively coupled plasma mass spectrometry (ICP-MS), as well as X-ray scanning fluorescence. These data can be reused by environmental researchers and soil and land managers of the Sierra Nevada National Park and similar regions to identify the effect of natural climate change, overprinted by human impact, as well as to project new management policies in similar protected areas.Universidad de Granada. Departamento de Estratigrafía y PaleontologíaJunta de Andalucía: Grupos de investigación RNM190 y RNM309Junta de Andalucía: Proyecto P11-RNM-7332España, Ministerio de Economía y Competitividad: Proyecto CGL2013-47038-RRamón y Cajal Fellowship: RYC-2015-18966Small Research Grant by the Carnegie Trust for the Universities of ScotlandMarie Curie Intra-European Fellowship of the 7th Framework Programme for Research, Technological Development and Demonstration of the European Commission: NAOSIPUK. Grant Number: PIEF-GA-2012-62302

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Single conformation spectroscopy of a flexible bichromophore: 3-(4-hydroxyphenyl)-N-benzylpropionamide

    No full text
    Resonant two-photon ionization (R2PI), UV hole-burning (UVHB), and resonant ion-dip infrared (RIDIR) spectroscopy have been used to study the single-conformation infrared and ultraviolet spectroscopy of 3-(4-hydroxyphenyl)-N-benzylpropionamide (HNBPA, HOC6H 5CH2CH2(C=O)NHCH2C6H 5) cooled in a supersonic expansion. UVHB determines the presence of three conformers, two of which dominate the spectrum. RIDIR spectra in the OH stretch (3600-3700 cm-1), amide NH stretch (3450-3500 cm -1), and C=O stretch (1700-1750 cm-1) regions reveal the presence of small shifts in these fundamentals that are characteristic of the folding of the flexible chain and the ring-ring and ring-chain interactions. On the basis of a comparison of the experimental frequency shifts with calculations, the two major experimentally observed conformers are assigned to two folded structures in which the two aromatic rings are (nominally) face-to-face and perpendicular to one another. The perpendicular structure has a transition assignable to the S0-S2 origin, while the face-to-face structure does not, consistent with a faster nonradiative process in the latter case. The calculated structures and vibrational frequencies are quite sensitive to the level of theory due to the flexibility of the interconnecting chain and the importance of dispersive interactions between the two aromatic rings. © 2008 American Chemical Society

    Entropy-driven population distributions in a prototypical molecule with two flexible side chains: O -(2-acetamidoethyl)- N -acetyltyramine

    No full text
    Resonant two-photon ionization (R2PI), resonant ion-dip infrared (RIDIR), and UV-UV hole-burning spectroscopies have been employed to obtain conformation-specific infrared and ultraviolet spectra under supersonic expansion conditions for O -(2-acetamidoethyl)- N -acetyltyramine (OANAT), a doubly substituted aromatic in which amide-containing alkyl and alkoxy side chains are located in para positions on a phenyl ring. For comparison, three single-chain analogs were also studied: (i) N -phenethyl-acetamide (NPEA), (ii) N - (p -methoxyphenethyl-acetamide) (NMPEA), and (iii) N -(2-phenoxyethyl)- acetamide (NPOEA). Six conformations of OANAT have been resolved, with S0 - S1 origins ranging from 34 536 to 35 711 cm-1, denoted A-F, respectively. RIDIR spectra show that conformers A-C each possess an intense, broadened amide NH stretch fundamental shifted below 3400 cm-1, indicative of the presence of an interchain H bond, while conformers D-F have both amide NH stretch fundamentals in the 3480-3495 cm-1 region, consistent with independent-chain structures with two free NH groups. NPEA has a single conformer with S0 - S1 origin at 37 618 cm-1. NMPEA has three conformers, two that dominate the R2P1 spectrum, with origin transitions between 35 580 and 35 632 cm-1. Four conformations, one dominate and three minor, of NPOEA have been resolved with origins between 35 654 and 36 423 cm-1. To aid the making of conformational assignments, the geometries of low-lying structures of all four molecules have been optimized and the associated harmonic vibrational frequencies calculated using density functional theory (DFT) and RIMP2 methods. The S0 - S1 adiabatic excitation energies have been calculated using the RICC2 method and vertical excitation energies using single-point time-dependent DFT. The sensitivity of the S0 - S1 energy separation in OANAT and NPOEA primarily arises from different orientations of the chain attached to the phenoxy group. Using the results of the single-chain analogs, tentative assignments have been made for the observed conformers of OANAT. The RIMP2 calculations predict that interchain H-bonded conformers of OANAT are 25-30 kJmol more stable than the extended-chain structures. However, the free energies of the interchain H-bonded and extended structures calculated at the preexpansion temperature (450 K) differ by less than 10 kJmol, and the number of extended structures far outweighs the number of H-bonded conformers. This entropy-driven effect explains the presence of the independent-chain conformers in the expansion, and cautions future studies that rely solely on relative energies of conformers in considering possible assignments. © 2007 American Institute of Physics
    corecore