307 research outputs found
On the failure of subadditivity of the Wigner-Yanase entropy
It was recently shown by Hansen that the Wigner-Yanase entropy is, for
general states of quantum systems, not subadditive with respect to
decomposition into two subsystems, although this property is known to hold for
pure states. We investigate the question whether the weaker property of
subadditivity for pure states with respect to decomposition into more than two
subsystems holds. This property would have interesting applications in quantum
chemistry. We show, however, that it does not hold in general, and provide a
counterexample.Comment: LaTeX2e, 4 page
Multichannel Approach to Clustering Matter
An approach is developed, combining the ideas of quantum statistical
mechanics and multichannel theory of scattering, for treating statistical
systems whose constituents can possess different bound states realized as
compact clusters. The main principles for constructing multichannel cluster
Hamiltonians are formulated: principle of statistical correctness, principle of
cluster coexistence, and principle of potential scaling. The importance of the
principle of statistical correctness is emphasized by showing that when it does
not hold the behaviour of thermodynamic functions becomes essentially
distorted. And moreover, unphysical instabilities can appear. The ideas are
carefully illustrated by a statistical model of hot nuclear matter.Comment: 1 file, LaTex, no figure
Next-to-next-to-leading order prediction for the photon-to-pion transition form factor
We evaluate the next-to-next-to-leading order corrections to the
hard-scattering amplitude of the photon-to-pion transition form factor. Our
approach is based on the predictive power of the conformal operator product
expansion, which is valid for a vanishing -function in the so-called
conformal scheme. The Wilson--coefficients appearing in the non-forward
kinematics are then entirely determined from those of the polarized
deep-inelastic scattering known to next-to-next-to-leading accuracy. We propose
different schemes to include explicitly also the conformal symmetry breaking
term proportional to the -function, and discuss numerical predictions
calculated in different kinematical regions. It is demonstrated that the
photon-to-pion transition form factor can provide a fundamental testing ground
for our QCD understanding of exclusive reactions.Comment: 62 pages LaTeX, 2 figures, 9 tables; typos corrected, some references
added, to appear in Phys. Rev.
Roto-vibrational spectrum and Wigner crystallization in two-electron parabolic quantum dots
We provide a quantitative determination of the crystallization onset for two
electrons in a parabolic two-dimensional confinement. This system is shown to
be well described by a roto-vibrational model, Wigner crystallization occurring
when the rotational motion gets decoupled from the vibrational one. The Wigner
molecule thus formed is characterized by its moment of inertia and by the
corresponding sequence of rotational excited states. The role of a vertical
magnetic field is also considered. Additional support to the analysis is given
by the Hartree-Fock phase diagram for the ground state and by the random-phase
approximation for the moment of inertia and vibron excitations.Comment: 10 pages, 8 figures, replaced by the published versio
Spectral Statistics of the Two-Body Random Ensemble Revisited
Using longer spectra we re-analyze spectral properties of the two-body random
ensemble studied thirty years ago. At the center of the spectra the old results
are largely confirmed, and we show that the non-ergodicity is essentially due
to the variance of the lowest moments of the spectra. The longer spectra allow
to test and reach the limits of validity of French's correction for the number
variance. At the edge of the spectra we discuss the problems of unfolding in
more detail. With a Gaussian unfolding of each spectrum the nearest neighbour
spacing distribution between ground state and first exited state is shown to be
stable. Using such an unfolding the distribution tends toward a semi-Poisson
distribution for longer spectra. For comparison with the nuclear table ensemble
we could use such unfolding obtaining similar results as in the early papers,
but an ensemble with realistic splitting gives reasonable results if we just
normalize the spacings in accordance with the procedure used for the data.Comment: 11 pages, 7 figure
Gupta–Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space-Times
We give a complete framework for the Gupta–Bleuler quantization of the free electromagnetic field on globally hyperbolic space-times. We describe one-particle structures that give rise to states satisfying the microlocal spectrum condition. The field algebras in the so-called Gupta–Bleuler representations satisfy the time-slice axiom, and the corresponding vacuum states satisfy the microlocal spectrum condition. We also give an explicit construction of ground states on ultrastatic space-times. Unlike previous constructions, our method does not require a spectral gap or the absence of zero modes. The only requirement, the absence of zero-resonance states, is shown to be stable under compact perturbations of topology and metric. Usual deformation arguments based on the time-slice axiom then lead to a construction of Gupta–Bleuler representations on a large class of globally hyperbolic space-times. As usual, the field algebra is represented on an indefinite inner product space, in which the physical states form a positive semi-definite subspace. Gauge transformations are incorporated in such a way that the field can be coupled perturbatively to a Dirac field. Our approach does not require any topological restrictions on the underlying space-time
Quark Imaging in the Proton Via Quantum Phase-Space Distributions
We develop the concept of quantum phase-space (Wigner) distributions for
quarks and gluons in the proton. To appreciate their physical content, we
analyze the contraints from special relativity on the interpretation of elastic
form factors, and examine the physics of the Feynman parton distributions in
the proton's rest frame. We relate the quark Wigner functions to the
transverse-momentum dependent parton distributions and generalized parton
distributions, emphasizing the physical role of the skewness parameter. We show
that the Wigner functions allow to visualize quantum quarks and gluons using
the language of the classical phase space. We present two examples of the quark
Wigner distributions and point out some model-independent features.Comment: 20 pages with 3 fiture
DFSeer: A visual analytics approach to facilitate model selection for demand forecasting
Selecting an appropriate model to forecast product demand is critical to the
manufacturing industry. However, due to the data complexity, market uncertainty
and users' demanding requirements for the model, it is challenging for demand
analysts to select a proper model. Although existing model selection methods
can reduce the manual burden to some extent, they often fail to present model
performance details on individual products and reveal the potential risk of the
selected model. This paper presents DFSeer, an interactive visualization system
to conduct reliable model selection for demand forecasting based on the
products with similar historical demand. It supports model comparison and
selection with different levels of details. Besides, it shows the difference in
model performance on similar products to reveal the risk of model selection and
increase users' confidence in choosing a forecasting model. Two case studies
and interviews with domain experts demonstrate the effectiveness and usability
of DFSeer.Comment: 10 pages, 5 figures, ACM CHI 202
The role of ERK5 in endothelial cell function
Extracellular-signal-regulated kinase 5 (ERK5), also termed big MAPK1 (BMK1), is the most recently discovered member of the mitogen-activated protein kinase (MAPK) family. It is expressed in a variety of tissues and is activated by a range of growth factors, cytokines and cellular stresses. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade is critical for normal cardiovascular development and vascular integrity. In vitro studies have revealed that, in endothelial cells, ERK5 is required for preventing apoptosis, mediating shear-stress signalling and regulating tumour angiogenesis. The present review focuses on our current understanding of the role of ERK5 in regulating endothelial cell function
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
- …