59 research outputs found

    Registration of atmospheric neutrinos with the Baikal neutrino telescope

    Full text link
    We present first neutrino induced events observed with a deep underwater neutrino telescope. Data from 70 days effective life time of the BAIKAL prototype telescope NT-96 have been analyzed with two different methods. With the standard track reconstruction method, 9 clear upward muon candidates have been identified, in good agreement with 8.7 events expected from Monte Carlo calculations for atmospheric neutrinos. The second analysis is tailored to muons coming from close to the opposite zenith. It yields 4 events, compared to 3.5 from Monte Carlo expectations. From this we derive a 90 % upper flux limit of 1.1 * 10^-13 cm^-2 sec^-1 for muons in excess of those expected from atmospheric neutrinos with zenith angle > 150 degrees and energy > 10GeV.Comment: 20 pages, 11 figure

    The optical module of the Baikal deep underwater neutrino telescope

    Get PDF
    A deep underwater Cherenkov telescope has been operating since 1993 in stages of growing size at 1.1 km depth in Lake Baikal. The key component of the telescope is the Optical Module (OM) which houses the highly sensitive phototube QUASAR-370. We describe design and parameters of the QUASAR-370, the layout of the optical module, the front-end electronics and the calibration procedures, and present selected results from the five-year operation underwater. Also, future developments with respect to a telescope consisting from several thousand OMs are discussed.Comment: 30 pages, 24 figure

    Warm Dark Matter from keVins

    Full text link
    We propose a simple model for Warm Dark Matter (WDM) in which two fermions are added to the Standard Model: (quasi-) stable "keVins" (keV inert fermions) which account for WDM and their unstable brothers, the "GeVins" (GeV inert fermions), both of which carry zero electric charge and lepton number, and are (approximately) "inert", in the sense that their only interactions are via suppressed couplings to the Z. We consider scenarios in which stable keVins are thermally produced and their abundance is subsequently diluted by entropy production from the decays of the heavier unstable GeVins. This mechanism could be implemented in a wide variety of models, including E_6 inspired supersymmetric models or models involving sterile neutrinos.Comment: 32 pages, 9 figures, 2 table

    The Baikal Deep Underwater Neutrino Experiment: Results, Status, Future

    Full text link
    We review the present status of the Baikal Underwater Neutrino Experiment and present results obtained with the various stages of the stepwise increasing detector: NT-36 (1993-95), NT-72 (1995-96) and NT-96 (1996-97). Results cover atmospheric muons, first clear neutrino events, search for neutrinos from WIMP annihilation in the center of the Earth, search for magnetic monopoles, and -- far from astroparticle physics -- limnology.Comment: Talk given at the Int. School on Nuclear Physics, Erice, Sept.199

    Measurement of the top quark mass in the tt→ dilepton channel from √s = 8 TeV ATLAS data

    Get PDF
    The top quark mass is measured in the tt¯ → dilepton channel (lepton = e,μ) using ATLAS data recorded in the year 2012 at the LHC. The data were taken at a proton proton centre-of-mass energy of √s = 8 TeV and correspond to an integrated luminosity of about 20.2 fb−1. Exploiting the template method, and using the distribution of invariant masses of lepton–b-jet pairs, the top quark mass is measured to be mtop = 172.99±0.41 (stat) ±0.74 (syst) GeV, with a total uncertainty of 0.84 GeV. Finally, a combination with previous ATLAS mtop measurements from √s = 7 TeV data in the tt¯ → dilepton and tt¯ → lepton + jets channels results in mtop = 172.84±0.34 (stat)±0.61 (syst) GeV, with a total uncertainty of 0.70 GeV
    corecore