80 research outputs found

    The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone® and Straumann Bone Ceramic®)

    Get PDF
    Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone® and Straumann Bone Ceramic®, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions

    The biodegradation of hydroxyapatite bone graft substitutes in vivo

    Get PDF
    Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss® consists of sintered bovine bone and NanoBone® is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone®, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling

    The survival and proliferation of fibroblasts on orthodontic miniscrews with different surface treatment: an in vitro study

    Get PDF
    It is of fundamental importance for prosthodontic and orthodontic applications that there is a short osseointegration time of dental implants without inflammation of the surrounding tissue. In addition to the chemical properties of the implant material, the surface morphology is an equally critical parameter. The objective of this work was to study the effect of two simple surface treatments on the survival and proliferation of fibroblasts. Three groups of orthodontic miniscrews (Mondeal®) were used. One group was given an airflow (EMS, Schweiz) treatment, the second was sand-blasted in the area of the threading and a third group served as a control. After preparation sterilised screws were cultured in vitro with fibroblasts (L-929). The metabolic cell activity on the implant surface was determined after 24, 48 and 120 hours using the alamarBlue assay and a count of DAPI labelled fibroblasts was performed with a fluorescence microscope. After 24 hours, but not at 48 hours and 120 hours, the metabolic activity of the fibroblasts was slightly decreased for the airflow screw group. Generally, no significant difference was found regarding metabolic activity and proliferation of fibroblasts within the different groups

    Bone functions and the requirements for bone grafts and substitutes in the orofacial region

    Get PDF
    Bone is the largest calcium storage, has distinctive plasticity and adaptability and is part of the supporting tissue. An adequate composition is thus necessary. The bone matrix consists of organic and anorganic structures. Osteoblasts, osteoclasts and osteocytes are responsible for bone formation, resorption and metabolism. The periosteum, endosteum and bone tissue are a functional unit and provide protection, nutrition and growth. Bone is subject to continuous remodelling

    Wound management after the application of bone grafting substitutes in the orofacial region

    Get PDF
    Surgical dressing after the application of bone grafting material depends on the type and size of the defect. A complete and tension-free wound closure has proved to be successful. In this context the infection problem needs special attention. Bone graft substitutes with an adequate surface structure, porosity and chemical properties, in combination with sufficient blood circulation, hold osteoconductive potential. They serve as a guide rail for the osteoblast-induced formation of new bone tissue, which at best may lead to complete replacement of the grafting material

    Critical considerations on the diagnostic appraisal, adaptation and remodelling of bone graft substitutes

    Get PDF
    The diagnostic assessment of skeletal defects has a long-standing tradition. As a result of the development of new bone grafting materials, the demands on diagnostic assessment have also increased. The mode and quality of diagnostic appraisal are crucial to further clinical use and outcome prediction. Alongside traditional clinical and biological techniques, molecular biological methods have gained a broad scope of application and will be used even more frequently in the future

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Spin dynamics in semiconductors

    Full text link
    This article reviews the current status of spin dynamics in semiconductors which has achieved a lot of progress in the past years due to the fast growing field of semiconductor spintronics. The primary focus is the theoretical and experimental developments of spin relaxation and dephasing in both spin precession in time domain and spin diffusion and transport in spacial domain. A fully microscopic many-body investigation on spin dynamics based on the kinetic spin Bloch equation approach is reviewed comprehensively.Comment: a review article with 193 pages and 1103 references. To be published in Physics Reports
    • 

    corecore