258 research outputs found

    Anticardiolipin antibodies and coronary heart disease

    Get PDF
    Arterial or venous thrombotic events have been described as complications in patients with positive anticardiolipin antibodies (aCL), affecting various organs including the heart. In order to see whether aCL could be, among others, a predisposing factor for coronary artery occlusions and whether it could serve as a prognostic marker for coronary heart disease, 232patients enrolled in the European Concerted Action on Thrombosis Angina Pectoris Study were studied. aCL and various other haemostatic parameters were determined at time of admittance in order to see whether a relationship existed between haemostasis at baseline and extent or prognosis of the cardiovascular disease. A follow-up at 12 and 24 months after angiography included information about relapsing coronary or other thrombotic events, treatment and outcome of the disease. aCL were not found to be a marker of either progressive cardiovascular disease or recurrent thrombotic events. No correlation was found, either in aCL positive or in aCL negative patients, between high levels of haemostasis activation markers, such as fi-thromboglobulin, platelet factor 4 or fibrinopeptide A and recurrent cardiovascular diseas

    AMS 3.0: prediction of post-translational modifications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We present here the recent update of AMS algorithm for identification of post-translational modification (PTM) sites in proteins based only on sequence information, using artificial neural network (ANN) method. The query protein sequence is dissected into overlapping short sequence segments. Ten different physicochemical features describe each amino acid; therefore nine residues long segment is represented as a point in a 90 dimensional space. The database of sequence segments with confirmed by experiments post-translational modification sites are used for training a set of ANNs.</p> <p>Results</p> <p>The efficiency of the classification for each type of modification and the prediction power of the method is estimated here using recall (sensitivity), precision values, the area under receiver operating characteristic (ROC) curves and leave-one-out tests (LOOCV). The significant differences in the performance for differently optimized neural networks are observed, yet the AMS 3.0 tool integrates those heterogeneous classification schemes into the single consensus scheme, and it is able to boost the precision and recall values independent of a PTM type in comparison with the currently available state-of-the art methods.</p> <p>Conclusions</p> <p>The standalone version of AMS 3.0 presents an efficient way to indentify post-translational modifications for whole proteomes. The training datasets, precompiled binaries for AMS 3.0 tool and the source code are available at <url>http://code.google.com/p/automotifserver</url> under the Apache 2.0 license scheme.</p

    Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells

    Get PDF
    Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization

    VHA-19 Is Essential in Caenorhabditis elegans Oocytes for Embryogenesis and Is Involved in Trafficking in Oocytes

    Get PDF
    There is an urgent need to develop new drugs against parasitic nematodes, which are a significant burden on human health and agriculture. Information about the function of essential nematode-specific genes provides insight to key nematode-specific processes that could be targeted with drugs. We have characterized the function of a novel, nematode-specific Caenorhabditis elegans protein, VHA-19, and show that VHA-19 is essential in the germline and, specifically, the oocytes, for the completion of embryogenesis. VHA-19 is also involved in trafficking the oocyte receptor RME-2 to the oocyte plasma membrane and is essential for osmoregulation in the embryo, probably because VHA-19 is required for proper eggshell formation via exocytosis of cortical granules or other essential components of the eggshell. VHA-19 may also have a role in cytokinesis, either directly or as an indirect effect of its role in osmoregulation. Critically, VHA-19 is expressed in the excretory cell in both larvae and adults, suggesting that it may have a role in osmoregulation in C. elegans more generally, probably in trafficking or secretion pathways. This is the first time a role for VHA-19 has been described

    E-Cadherin Destabilization Accounts for the Pathogenicity of Missense Mutations in Hereditary Diffuse Gastric Cancer

    Get PDF
    E-cadherin is critical for the maintenance of tissue architecture due to its role in cell-cell adhesion. E-cadherin mutations are the genetic cause of Hereditary Diffuse Gastric Cancer (HDGC) and missense mutations represent a clinical burden, due to the uncertainty of their pathogenic role. In vitro and in vivo, most mutations lead to loss-of-function, although the causal factor is unknown for the majority. We hypothesized that destabilization could account for the pathogenicity of E-cadherin missense mutations in HDGC, and tested our hypothesis using in silico and in vitro tools. FoldX algorithm was used to calculate the impact of each mutation in E-cadherin native-state stability, and the analysis was complemented with evolutionary conservation, by SIFT. Interestingly, HDGC patients harbouring germline E-cadherin destabilizing mutants present a younger age at diagnosis or death, suggesting that the loss of native-state stability of E-cadherin accounts for the disease phenotype. To elucidate the biological relevance of E-cadherin destabilization in HDGC, we investigated a group of newly identified HDGC-associated mutations (E185V, S232C and L583R), of which L583R is predicted to be destabilizing. We show that this mutation is not functional in vitro, exhibits shorter half-life and is unable to mature, due to premature proteasome-dependent degradation, a phenotype reverted by stabilization with the artificial mutation L583I (structurally tolerated). Herein we report E-cadherin structural models suitable to predict the impact of the majority of cancer-associated missense mutations and we show that E-cadherin destabilization leads to loss-of-function in vitro and increased pathogenicity in vivo

    A Deep Insight into the Sialotranscriptome of the Gulf Coast Tick, Amblyomma maculatum

    Get PDF
    Background: Saliva of blood sucking arthropods contains compounds that antagonize their hosts ’ hemostasis, which include platelet aggregation, vasoconstriction and blood clotting; saliva of these organisms also has anti-inflammatory and immunomodullatory properties. Perhaps because hosts mount an active immune response against these compounds, the diversity of these compounds is large even among related blood sucking species. Because of these properties, saliva helps blood feeding as well as help the establishment of pathogens that can be transmitted during blood feeding. Methodology/Principal Findings: We have obtained 1,626,969 reads by pyrosequencing a salivary gland cDNA library from adult females Amblyomma maculatum ticks at different times of feeding. Assembly of this data produced 72,441 sequences larger than 149 nucleotides from which 15,914 coding sequences were extracted. Of these, 5,353 had.75 % coverage to their best match in the non-redundant database from the National Center for Biotechnology information, allowing for the deposition of 4,850 sequences to GenBank. The annotated data sets are available as hyperlinked spreadsheets. Putative secreted proteins were classified in 133 families, most of which have no known function. Conclusions/Significance: This data set of proteins constitutes a mining platform for novel pharmacologically activ

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Planetary Climates: Terraforming in Science Fiction

    Get PDF

    British Romanticism and the Global Climate

    Get PDF
    As a result of developments in the meteorological and geological sciences, the Romantic period saw the gradual emergence of attempts to understand the climate as a dynamic global system that could potentially be affected by human activity. This chapter examines textual responses to climate disruption cause by the Laki eruption of 1783 and the Tambora eruption of 1815. During the Laki haze, writers such as Horace Walpole, Gilbert White, and William Cowper found in Milton a powerful way of understanding the entanglements of culture and climate at a time of national and global crisis. Apocalyptic discourse continued to resonate during the Tambora crisis, as is evident in eyewitness accounts of the eruption, in the utopian predictions of John Barrow and Eleanor Anne Porden, and in the grim speculations of Byron’s ‘Darkness’. Romantic writing offers a powerful analogue for thinking about climate change in the Anthropocene
    corecore