1,128 research outputs found

    Detection of the 2175 angstrom dust feature in Mg II absorption systems

    Full text link
    The broad absorption bump at 2175 angstrom due to dust, which is ubiquitous in the Galaxy and is seen in the Magellanic clouds, is also seen in a composite spectrum of Mg II absorbers. The composite absorber spectrum is obtained by taking the geometric mean of 92 quasar spectra after aligning them in the restframe of 96 absorbers. By aligning the spectra according to absorber redshifts we reinforce the spectral features of the absorbers, and smooth over possible bumps and wiggles in the emission spectra as well as small features in the flat fielding of the spectra. The width of the observed absorption feature is 200-300 angstrom (FWHM), or 0.4-0.6 (micron)^{-1} and the central wavelength is 2240 angstrom. These are somewhat different from the central wavelength of 2176 angstrqom and FWHM=0.8-1.25 (micron)^{-1} found in the Galaxy. Simulations show that this discrepancy between the properties of the 2175 angstrom feature in Mg II absorbers and Galactic ISM can be mostly explained by the different methods used to measure them.Comment: To appear in ApJ(letters). 11 pages, Latex, uses AASTeX v4.

    Interrogating a Hexokinase-Selected Small-Molecule Library for Inhibitors of Plasmodium falciparum Hexokinase

    Get PDF
    This is the published version.Parasites in the genus Plasmodium cause disease throughout the tropic and subtropical regions of the world. P. falciparum, one of the deadliest species of the parasite, relies on glycolysis for the generation of ATP while it inhabits the mammalian red blood cell. The first step in glycolysis is catalyzed by hexokinase (HK). While the 55.3-kDa P. falciparum HK (PfHK) shares several biochemical characteristics with mammalian HKs, including being inhibited by its products, it has limited amino acid identity (∼26%) to the human HKs, suggesting that enzyme-specific therapeutics could be generated. To that end, interrogation of a selected small-molecule library of HK inhibitors has identified a class of PfHK inhibitors, isobenzothiazolinones, some of which have 50% inhibitory concentrations (IC50s) of <1 μM. Inhibition was reversible by dilution but not by treatment with a reducing agent, suggesting that the basis for enzyme inactivation was not covalent association with the inhibitor. Lastly, six of these compounds and the related molecule ebselen inhibited P. falciparum growth in vitro (50% effective concentration [EC50] of ≥0.6 and <6.8 μM). These findings suggest that the chemotypes identified here could represent leads for future development of therapeutics against P. falciparum

    Sexual selection on male vocal fundamental frequency in humans and other anthropoids

    Get PDF
    D.A.P. was supported by a National Institutes of Mental Health T32 MH70343-05 fellowship. J.R.W. was supported by a National Science Foundation predoctoral fellowship.In many primates, including humans, the vocalizations of males and females differ dramatically, with male vocalizations and vocal anatomy often seeming to exaggerate apparent body size. These traits may be favoured by sexual selection because low-frequency male vocalizations intimidate rivals and/or attract females, but this hypothesis has not been systematically tested across primates, nor is it clear why competitors and potential mates should attend to vocalization frequencies. Here we show across anthropoids that sexual dimorphism in fundamental frequency (F0) increased during evolutionary transitions towards polygyny, and decreased during transitions towards monogamy. Surprisingly, humans exhibit greater F0 sexual dimorphism than any other ape. We also show that low-F0 vocalizations predict perceptions of men’s dominance and attractiveness, and predict hormone profiles (low cortisol and high testosterone) related to immune function. These results suggest that low male F0 signals condition to competitors and mates, and evolved in male anthropoids in response to the intensity of mating competition.PostprintPeer reviewe

    The Lantern Vol. 46, No. 2, April 1980

    Get PDF
    • The Voyage to Man\u27s Destiny • If I Could Keep the Times • Barstool Blues • I Didn\u27t Know • Felonious, Friend • Cool Ride • Georgia • Let Us Eat and Drink • In a Field • New Born Foal • Union to Freedom • In the Woods • Anthropomorphism • Runner • C.C. • Lake Attempt • A Fuzzy Blue Line • Trust Me • Haven\u27t We Met Before? • Rationality • Expecting Me • Short Storyhttps://digitalcommons.ursinus.edu/lantern/1116/thumbnail.jp

    The origin of hydrogen line emission for five Herbig Ae/Be stars spatially resolved by VLTI/AMBER spectro-interferometry

    Get PDF
    To trace the accretion and outflow processes around YSOs, diagnostic spectral lines such as the BrG 2.166 micron line are widely used, although due to a lack of spatial resolution, the origin of the line emission is still unclear. Employing the AU-scale spatial resolution which can be achieved with infrared long-baseline interferometry, we aim to distinguish between theoretical models which associate the BrG line emission with mass infall or mass outflow processes. Using the VLTI/AMBER instrument, we spatially and spectrally (R=1500) resolved the inner environment of five Herbig Ae/Be stars (HD163296, HD104237, HD98922, MWC297, V921Sco) in the BrG emission line as well as in the adjacent continuum. All objects (except MWC297) show an increase of visibility within the BrG emission line, indicating that the BrG-emitting region in these objects is more compact than the dust sublimation radius. For HD98922, our quantitative analysis reveals that the line-emitting region is compact enough to be consistent with the magnetospheric accretion scenario. For HD163296, HD104237, MWC297, and V921Sco we identify a stellar wind or a disk wind as the most likely line-emitting mechanism. We search for general trends and find that the size of the BrG-emitting region does not seem to depend on the basic stellar parameters, but correlates with the H-alpha line profile shape. We find evidence for at least two distinct BrG line-formation mechanisms. Stars with a P-Cygni H-alpha line profile and a high mass-accretion rate seem to show particularly compact BrG-emitting regions (R_BrG/R_cont<0.2), while stars with a double-peaked or single-peaked H-alpha-line profile show a significantly more extended BrG-emitting region (0.6<R_BrG/R_cont<1.4), possibly tracing a stellar wind or a disk wind.Comment: 20 pages; 11 figures; Accepted by A&A; a high quality version of the paper can be obtained at http://www.skraus.eu/papers/kraus.HAeBe-BrGsurvey.pd

    STREGA: STRucture and Evolution of the GAlaxy - I : Survey overview and first results

    Get PDF
    STREGA (STRucture and Evolution of the GAlaxy) is a guaranteed time survey being performed at the VST (the ESO Very Large Telescope Survey Telescope) to map about 150 square degrees in the Galactic halo, in order to constrain the mechanisms of galactic formation and evolution. The survey is built as a 5 yr project, organized in two parts: a core programme to explore the surrounding regions of selected stellar systems and a second complementary part to map the southern portion of the Fornax orbit and extend the observations of the core programme. The adopted stellar tracers are mainly variable stars (RR Lyraes and long-period variables) and main-sequence turn-off stars for which observations in the g, r, i bands are obtained. We present an overview of the survey and some preliminary results for three observing runs that have been completed. For the region centred on ω Cen (37 deg^2), covering about three tidal radii, we also discuss the detected stellar density radial profile and angular distribution, leading to the identification of extratidal cluster stars. We also conclude that the cluster tidal radius is about 1.2 deg, in agreement with values in the literature based on the Wilson model.Peer reviewedFinal Accepted Versio

    Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives

    Get PDF
    Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units, i. e. for stationary applications. With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus. In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized. In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles. In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.Fil: Bellosta von Colbe, Jose. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Ares Fernández, José Ramón. Universidad Autónoma de Madrid; EspañaFil: Jussara, Barale. Università di Torino; ItaliaFil: Baricco, Marcello. Università di Torino; ItaliaFil: Buckley, Craig E.. Curtin University; AustraliaFil: Capurso, Giovanni. Helmholtz Zentrum Geesthacht; AlemaniaFil: Gallandat, Noris. GRZ Technologies Ltd; SuizaFil: Grant, David M.. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados UnidosFil: Guzik, Matylda N.. University of Oslo; NoruegaFil: Jacob, Isaac. Ben Gurion University of the Negev; IsraelFil: Jensen, Emil H.. University of Oslo; NoruegaFil: Jensen, Torben. University Aarhus; DinamarcaFil: Jepsen, Julian. Helmholtz Zentrum Geesthacht; AlemaniaFil: Klassen, Thomas. Helmholtz Zentrum Geesthacht; AlemaniaFil: Lototskyy, Mykhaylol V.. University of Cape Town; SudáfricaFil: Manickam, Kandavel. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Montone, Amelia. Casaccia Research Centre; ItaliaFil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Helmholtz Zentrum Geesthacht; AlemaniaFil: Sartori, Sabrina. University of Oslo; NoruegaFil: Sheppard, Drew A.. Curtin University; AustraliaFil: Stuart, Alastair. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Walker, Gavin. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Webb, Colin J.. Griffith University; AustraliaFil: Yang, Heena. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; SuizaFil: Yartys, Volodymyr. Institute for Energy Technology; NoruegaFil: Züttel, Andreas. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; SuizaFil: Dornheim, Martin. Helmholtz Zentrum Geesthacht; Alemani

    Identifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures

    Full text link
    Carriers of germline biallelic pathogenic variants in the MUTYH gene have a high risk of colorectal cancer. We test 5649 colorectal cancers to evaluate the discriminatory potential of a tumor mutational signature specific to MUTYH for identifying biallelic carriers and classifying variants of uncertain clinical significance (VUS). Using a tumor and matched germline targeted multi-gene panel approach, our classifier identifies all biallelic MUTYH carriers and all known non-carriers in an independent test set of 3019 colorectal cancers (accuracy = 100% (95% confidence interval 99.87-100%)). All monoallelic MUTYH carriers are classified with the non-MUTYH carriers. The classifier provides evidence for a pathogenic classification for two VUS and a benign classification for five VUS. Somatic hotspot mutations KRAS p.G12C and PIK3CA p.Q546K are associated with colorectal cancers from biallelic MUTYH carriers compared with non-carriers (p = 2 x 10(-23) and p = 6 x 10(-11), respectively). Here, we demonstrate the potential application of mutational signatures to tumor sequencing workflows to improve the identification of biallelic MUTYH carriers. Germline biallelic pathogenic MUTYH variants predispose patients to colorectal cancer (CRC); however, approaches to identify MUTYH variant carriers are lacking. Here, the authors evaluated mutational signatures that could distinguish MUTYH carriers in large CRC cohorts, and found MUTYH-associated somatic mutations

    Temporal mapping of photochemical reactions and molecular excited states with carbon specificity

    Get PDF
    Photochemical reactions are essential to a large number of important industrial and biological processes. A method for monitoring photochemical reaction kinetics and the dynamics of molecular excitations with spatial resolution within the active molecule would allow a rigorous exploration of the pathway and mechanism of photophysical and photochemical processes. Here we demonstrate that laser-excited muon pump-probe spin spectroscopy (photo-μSR) can temporally and spatially map these processes with a spatial resolution at the single-carbon level in a molecule with a pentacene backbone. The observed time-dependent light-induced changes of an avoided level crossing resonance demonstrate that the photochemical reactivity of a specific carbon atom is modified as a result of the presence of the excited state wavefunction. This demonstrates the sensitivity and potential of this technique in probing molecular excitations and photochemistry
    corecore