846 research outputs found

    Time-Dependent MHD Shocks and Line Emission: The Case of the DG Tau Jet

    Get PDF
    The line emission from a growing number of Herbig-Haro jets can be observed and resolved at angular distances smaller than a few arcseconds from the central source. The interpretation of this emission is problematic, since the simplest model of a cooling jet cannot sustain it. It has been suggested that what one actually observes are shocked regions with a filling factor of 1\sim 1%. In this framework, up to now, comparisons with observations have been based on stationary shock models. Here we introduce for the first time the self-consistent dynamics of such shocks and we show that considering their properties at different times, i.e. locations, we can reproduce observational data of the DG Tau microjet. In particular, we can interpret the spatial behavior of the [SII]6716/6731 and [NII]/[OI]6583/6300 line intensity ratios adopting a set of physical parameters that yield values of mass loss rates and magnetic fields consistent with previous estimates. We also obtain the values of the mean ionization fraction and electron density along the jet, compare these values with the ones derived from observations using the sulfur doublet to constrain the electron density (e.g. Bacciotti et al. 1995).Comment: 6 pages, 3 figure

    Tomographic reconstruction of the three-dimensional structure of the HH30 jet

    Full text link
    The physical parameters of Herbig-Haro jets are usually determined from emission line ratios, obtained from spectroscopy or narrow band imaging, assuming that the emitting region is homogeneous along the line of sight. Under the more general hypothesis of axisymmetry, we apply tomographic reconstruction techniques to the analysis of Herbig-Haro jets. We use data of the HH30 jet taken by Hartigan & Morse (2007) with the Hubble space telescope using the slitless spectroscopy technique. Using a non-parametric Tikhonov regularization technique, we determine the volumetric emission line intensities of the [SII]6716,6731, [OI]6300 and [NII]6583 forbidden emission lines. From our tomographic analysis of the corresponding line ratios, we produce "three-dimensional" images of the physical parameters. The reconstructed density, temperature and ionization fraction present much steeper profiles than those inferred using the assumption of homogeneity. Our technique reveals that the reconstructed jet is much more collimated than the observed one close to the source (a width ~ 5 AU vs. ~ 20 AU at a distance of 10 AU from the star), while they have similar widths at larger distances. In addition, our results show a much more fragmented and irregular jet structure than the classical analysis, suggesting that the the ejection history of the jet from the star-disk system has a shorter timescale component (~ some months) superimposed on a longer, previously observed timescale (of a few years). Finally, we discuss the possible application of the same technique to other stellar jets and planetary nebulae.Comment: 13 pages, 9 figures, accepted by Ap

    Numerical simulations of radiative magnetized Herbig-Haro jets: the influence of pre-ionization from X-rays on emission lines

    Get PDF
    We investigate supersonic, axisymmetric magnetohydrodynamic (MHD) jets with a time-dependent injection velocity by numerical simulations with the PLUTO code. Using a comprehensive set of parameters, we explore different jet configurations in the attempt to construct models that can be directly compared to observational data of microjets. In particular, we focus our attention on the emitting properties of traveling knots and construct, at the same time, accurate line intensity ratios and surface brightness maps. Direct comparison of the resulting brightness and line intensity ratios distributions with observational data of microjets shows that a closer match can be obtained only when the jet material is pre-ionized to some degree. A very likely source for a pre-ionized medium is photoionization by X-ray flux coming from the central object.Comment: Accepted for publication in Ap

    HST/STIS observations of the RW Aurigae bipolar jet: mapping the physical parameters close to the source

    Full text link
    We present the results of new spectral diagnostic investigations applied to high-resolution long-slit spectra of the RW Aur bipolar jet obtained with HST/STIS. The spectra include the forbidden doublets [O I] 6300,6363 \AA, [S II] 6716,6731 \AA, and [N II] 6548, 6583 \AA that we utilized to determine electron density, electron temperature, hydrogen ionisation fraction, total hydrogen density, radial velocity and the mass outflow rate. We were able to extract the parameters as far as 3".9 in the red- and 2".1 in the blueshifted beam. The RW Aur jet appears to be the second densest outflow from a T Tauri star studied so far, but its other properties are quite similar to those found in other jets from young stars. The overall trend of the physical parameters along the first few arcseconds of the RW Aur jet is similar to that of HH 30 and DG Tau and this can reflect analogies in the mechanisms operating in that region, suggesting the same engine is accelerating the jets in the T Tauri stars with outflows. Our study of the RW Aur jet indicates for the first time that, despite the detected marked asymmetries in physical and kinematic properties between the two lobes, the mass outflow rates in the two lobes are similar. This appears to indicate that the central engine has constraining symmetries on both sides of the system, and that the observed asymmetries are probably due to different environmental conditions.Comment: 24 pages, 10 figures, accepted for publication in the Astronomy and Astrophysic

    Hydrogen permitted lines in the first near-IR spectra of Th 28 microjet: accretion or ejection tracers?

    Full text link
    We report the first near-infrared detection of the bipolar microjet from TTauri star ThA 15-28 (aka Th 28). Spectra were obtained with VLT/ISAAC for the slit both perpendicular and parallel to the flow to examine jet kinematics and gas physics within the first arcsecond from the star. The jet was successfully detected in both molecular and atomic lines. The H_2 component was found to be entirely blueshifted around the base of the bipolar jet. It shows that only the blue lobe is emitting in H_2 while light is scattered in the direction of the red lobe, highlighting an asymmetric extinction and/or excitation between the two lobes. Consistent with this view, the red lobe is brighter in all atomic lines. Interestingly, the jet was detected not only in [Fe II], but also in Br gamma and Pa beta lines. Though considered tracers mainly of accretion, we find that these high excitation hydrogen permitted lines trace the jet as far as 150 AU from the star. This is confirmed in a number of ways: the presence of the [Fe II] 2.13 micron line which is of similarly high excitation; H I velocities which match the jet [Fe II] velocities in both the blue and red lobe; and high electron density close to the source of >6x10^4 cm^-3 derived from the [Fe II] 1.64,1.60 micron ratio. These near-infrared data complement HST/STIS optical and near-ultraviolet data for the same target which were used in a jet rotation study, although no rotation signature could be identified here due to insufficient angular resolution. The unpublished HST/STIS H alpha emission is included here along side the other H I lines. Identifying Br gamma and Pa beta as tracers of ejection is significant because of the importance of finding strong near-infrared probes close to the star, where forbidden lines are quenched, which will help understand accretion-ejection when observed with high spatial resolution instruments such as VLTI/AMBER.Comment: 18 pages, 26 figures, Accepted by Ap

    Brown Dwarf Jets: Investigating the Universality of Jet Launching Mechanisms at the Lowest Masses

    Get PDF
    Recently it has become apparent that proto-stellar-like outflow activity extends to the brown dwarf (BD) mass regime. While the presence of accretion appears to be the common ingredient in all objects known to drive jets fundamental questions remain unanswered. The more prominent being the exact mechanism by which jets are launched, and whether this mechanism remains universal among such a diversity of sources and scales. To address these questions we have been investigating outflow activity in a sample of protostellar objects that differ considerably in mass and mass accretion rate. Central to this is our study of brown dwarf jets. To date Classical T Tauri stars (CTTS) have offered us the best touchstone for decoding the launching mechanism. Here we shall summarise what is understood so far of BD jets and the important constraints observations can place on models. We will focus on the comparison between jets driven by objects with central mass < 0.1M \odot and those driven by CTTSs. In particular we wish to understand how the the ratio of the mass outflow to accretion rate compares to what has been measured for CTTSs.Comment: Proceedings of IAU meeting 275, "Jets at All Scales

    Confronting 3 Dimensional Time-dependent Jet Simulations with HST Observations

    Full text link
    We perform state-of-the-art, 3D, time-dependent simulations of magnetized disk winds, carried out to simulation scales of 60 Astronomical Units, in order to confront optical HST observations of protostellar jets. We ``observe'' the optical forbidden line emission produced by shocks within our simulated jets and compare these with actual observations. Our simulations reproduce the rich structure of time varying jets, including jet rotation far from the source, an inner (up to 400 km/s) and outer (less than 100 km/s) component of the jet, and jet widths of up to 20 Astronomical Units in agreement with observed jets. These simulations when compared with the data are able to constrain disk wind models. In particular, models featuring a disk magnetic field with a modest radial spatial variation across the disk are favored.Comment: Accepted for publication in Ap

    Recipes for stellar jets: results of combined optical/infrared diagnostics

    Get PDF
    We examine the conditions of the plasma along a sample of 'classical' Herbig-Haro jets located in the Orion and Vela star forming regions, through combined optical-infrared spectral diagnostics. Our sample includes HH 111, HH 34, HH 83, HH 73, HH 24 C/E, HH 24 J, observed at moderate spatial/spectral resolution. The obtained spectra cover a wide wavelength range from 0.6-2.5 um, including many transitions from regions of different excitation conditions. This allows us to probe the density and temperature stratification which characterises the cooling zones behind the shock fronts along the jet. The derived physical parameters (such as the extinction, the electron density and temperature, the ionisation fraction, and the total density) are used to estimate the depletion onto dust grains of Calcium and Iron with respect to solar abundances. This turns out to be between 70% and 0% for Ca and ~90% for Fe, suggesting that the weak shocks present in the beams are not capable of completely destroying the dust grains. We then derive the mass flux rates (Mdot_jet is on average 5 10^-8 M_solar yr^-1) and the associated linear momentum fluxes. The latter are higher than, or of the same order as, those measured in the coaxial molecular flows, suggesting that the flows are jet driven. Finally, we discuss differences between jets in our sample.Comment: 19 pages, 15 figures, accepted by A&

    Spatially Resolved Observations of the Bipolar Optical Outflow from the Brown Dwarf 2MASSJ12073347-3932540

    Get PDF
    Studies of brown dwarf (BD) outflows provide information pertinent to questions on BD formation, as well as allowing outflow mechanisms to be investigated at the lowest masses. Here new observations of the bipolar outflow from the 24 MJUP_{JUP} BD, 2MASSJ12073347-3932540 are presented. The outflow was originally identified through the spectro-astrometric analysis of the [OI]λ\lambda6300 emission line. Follow-up observations consisting of spectra and [SII], R-band and I-band images were obtained. The new spectra confirm the original results and are used to constrain the outflow PA at \sim 65^{\circ}. The [OI]λ\lambda6300 emission line region is spatially resolved and the outflow is detected in the [SII] images. The detection is firstly in the form of an elongation of the point spread function along the direction of the outflow PA. Four faint knot-like features (labelled {\it A-D}) are also observed to the south-west of 2MASSJ12073347-3932540 along the same PA suggested by the spectra and the elongation in the PSF. Interestingly, {\it D}, the feature furthest from the source is bow-shaped with the apex pointing away from 2MASSJ12073347-3932540. A color-color analysis allows us to conclude that at least feature {\it D} is part of the outflow under investigation while {\it A} is likely a star or galaxy. Follow-up observations are needed to confirm the origin of {\it B} and {\it C}. This is a first for a BD, as BD optical outflows have to date only been detected using spectro-astrometry. This result also demonstrates for the first time that BD outflows can be collimated and episodic.Comment: Accepted by ApJ, ref ApJ89096R
    corecore