135 research outputs found
Public health strategies to reduce sugar intake in the UK: An exploration of public perceptions using digital spaces
Objective: To explore UK public perceptions of children's sugar consumption, Public Health England's Change4Life Sugar Smart app and the Soft Drinks Industry Levy, using solicited and unsolicited digital data.
Methods: Data from three digital spaces were used as follows: (1) an online questionnaire advertised on parenting forums; (2) posts to UK online parenting forums; and (3) English language Tweets from Twitter. Quantitative data were analysed using descriptive statistics and qualitative data using content and inductive thematic analysis.
Results: Data were (study 1) 184 questionnaire participants; (study 2) 412 forum posts; and (study 3) 618 Tweets. In study 1, 94.0% (n = 173) agreed that children in the UK consumed too much sugar and this had a negative health effect (98.4%, n = 181). Environments (n = 135, 73.4%), media/advertising (n = 112, 60.9%) and parents (n = 107, 58.2%) were all reported as barriers to changing children's sugar intake. In study 2, more posts were negative towards the Soft Drinks Industry Levy (n = 189, 45.9%) than positive (n = 145, 35.2%), and themes about the inability of the Levy to affect sugar consumption in children and childhood obesity emerged. Other themes related to distrust of the government, food industry and retailers. In study 3, the Sugar Smart app was viewed positively (n = 474, 76.7%) with its function associated solely with identification of sugar content.
Conclusions: Participants accepted the necessity of sugar reduction in children, but recognised the complexity of behaviour change. Public health activities were not always perceived as effective strategies for health promotion. There was some distrust in government, public health officials and the food industry. A less simplistic approach to sugar reduction and more credible sources of information may, therefore, be welcomed by the public
Short Term Development and Fate of MGE-Like Neural Progenitor Cells in Jaundiced and Non-Jaundiced Rat Brain
A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Neonatal hyperbilirubinemia targets specific brain regions and can lead to kernicterus. One of the most debilitating symptoms of kernicterus is dystonia, which results from bilirubin toxicity to the globus pallidus (GP). Stem cell transplantation into the GP to replace lost neurons and restore basal ganglia circuits function is a potential therapeutic strategy to treat dystonia in kernicterus. In this study we transplanted human medial ganglionic eminence (MGE)-like neural progenitor cells (NPCs) that we differentiated into a primarily gamma-aminobutyric acid (GABA)ergic phenotype, into the GP of non-immunosuppressed jaundiced (jj) and non-jaundiced (Nj) rats. We assessed the survival and development of graft cells at three time-points post-transplantation. While grafted MGE-like NPCs survived and generated abundant fibers in both jj and Nj brains, NPC survival was greater in the jj brain. These results were consistent with our previous finding that excitatory spinal interneuron-like NPCs exhibited a higher survival rate in the jj brain than in the Nj brain. Our findings further support our hypothesis that slightly elevated bilirubin levels in the jj brain served as an antioxidant and immunosuppressant to protect the transplanted cells. We also identified graft fibers growing toward brain regions that receive projections from the GP, as well as host fibers extending toward the graft. These promising findings suggest that MGE-like NPCs may have the capacity to restore the circuits connecting GP and other nuclei.NIH Center of Biomedical Research Excellence program project P20 GM104936Children's Mercy HospitalRonald D. Deffenbaugh FoundationKansas Intellectual and Developmental Disabilities Research Center HD09021
Influence of ground-state structure and Mg2+ binding on folding kinetics of the guanine-sensing riboswitch aptamer domain
Riboswitch RNAs fold into complex tertiary structures upon binding to their cognate ligand. Ligand recognition is accomplished by key residues in the binding pocket. In addition, it often crucially depends on the stability of peripheral structural elements. The ligand-bound complex of the guanine-sensing riboswitch from Bacillus subtilis, for example, is stabilized by extensive interactions between apical loop regions of the aptamer domain. Previously, we have shown that destabilization of this tertiary loop–loop interaction abrogates ligand binding of the G37A/C61U-mutant aptamer domain (Gswloop) in the absence of Mg2+. However, if Mg2+ is available, ligand-binding capability is restored by a population shift of the ground-state RNA ensemble toward RNA conformations with pre-formed loop–loop interactions. Here, we characterize the striking influence of long-range tertiary structure on RNA folding kinetics and on ligand-bound complex structure, both by X-ray crystallography and time-resolved NMR. The X-ray structure of the ligand-bound complex reveals that the global architecture is almost identical to the wild-type aptamer domain. The population of ligand-binding competent conformations in the ground-state ensemble of Gswloop is tunable through variation of the Mg2+ concentration. We quantitatively describe the influence of distinct Mg2+ concentrations on ligand-induced folding trajectories both by equilibrium and time-resolved NMR spectroscopy at single-residue resolution
Conserving Conflict? Transfrontier Conservation, Development Discourses and Local Conflict Between South Africa and Lesotho
This paper describes and analyses how discourses of conservation and development as well as migrant labour practices can be understood as transnational dynamics that both cement and complicate transnational relations. It also looks into how these dynamics articulate with, shape and are being shaped by ‘the local’. Focusing on the north-eastern boundary of Lesotho in the area of the ‘Maloti-Drakensberg transfrontier conservation and development project’, we show how conflictual situations put the ethnographic spotlight on the ways in which ‘local people’ in Lesotho deal with dual forces of localisation and transnationalisation. We argue that they accommodate, even appropriate, these dual pressures by adopting an increasingly flexible stance in terms of identity, alliances, livelihood options and discourses
Understanding different dominance patterns in western Amazonian forests
Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥2.5 cm diameter, 2609 species) to explore the relationships between local abundance, regional frequency and spatial aggregation of dominant species in four main habitat types in western Amazonia. Although the abundance-occupancy relationship is positive for the full dataset, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unravelling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests.Publisher PDFPeer reviewe
Comprehensive phylogenomic time tree of bryophytes reveals deep relationships and uncovers gene incongruences in the last 500 million years of diversification
Premise: Bryophytes form a major component of terrestrial plant biomass, structuring ecological communities in all biomes. Our understanding of the evolutionary history of hornworts, liverworts, and mosses has been significantly reshaped by inferences from molecular data, which have highlighted extensive homoplasy in various traits and repeated bursts of diversification. However, the timing of key events in the phylogeny, patterns, and processes of diversification across bryophytes remain unclear. Methods: Using the GoFlag probe set, we sequenced 405 exons representing 228 nuclear genes for 531 species from 52 of the 54 orders of bryophytes. We inferred the species phylogeny from gene tree analyses using concatenated and coalescence approaches, assessed gene conflict, and estimated the timing of divergences based on 29 fossil calibrations. Results: The phylogeny resolves many relationships across the bryophytes, enabling us to resurrect five liverwort orders and recognize three more and propose 10 new orders of mosses. Most orders originated in the Jurassic and diversified in the Cretaceous or later. The phylogenomic data also highlight topological conflict in parts of the tree, suggesting complex processes of diversification that cannot be adequately captured in a single gene-tree topology. Conclusions: We sampled hundreds of loci across a broad phylogenetic spectrum spanning at least 450 Ma of evolution; these data resolved many of the critical nodes of the diversification of bryophytes. The data also highlight the need to explore the mechanisms underlying the phylogenetic ambiguity at specific nodes. The phylogenomic data provide an expandable framework toward reconstructing a comprehensive phylogeny of this important group of plantsFunding was provided by the NSF collaborative project “Building a Comprehensive Evolutionary History of Flagellate Plants” (DEB #1541506 to J.G. Burleigh, E.C. Davis, S.F. McDaniel, and E.B. Sessa, and #1541545 to M von Konrat). B.G. acknowledges DEB‐1753811. J.C.V.A. acknowledges the Canada Research Chair (950‐232698); the CRNSG‐RGPIN 05967–2016 and the Canadian Foundation for Innovation (projects 36781, 39135). The authors thank the two anonymous reviewers and the Associate Editor for their constructive comments on previous versions of the manuscrip
A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells
The eukaryotic Ccr4/Caf1/Not complex is involved in deadenylation of mRNAs. The Caf1 and Ccr4 subunits both potentially have deadenylating enzyme activity. We investigate here the roles of Ccr4 and Caf1 in deadenylation in two organisms that separated early in eukaryotic evolution: humans and trypanosomes. In Trypanosoma brucei, we found a complex containing CAF1, NOT1, NOT2 and NOT5, DHH1 and a possible homologue of Caf130; no homologue of Ccr4 was found. Trypanosome CAF1 has deadenylation activity, and is essential for cell survival. Depletion of trypanosome CAF1 delayed deadenylation and degradation of constitutively expressed mRNAs. Human cells have two isozymes of Caf1: simultaneous depletion of both inhibited degradation of an unstable reporter mRNA. In both species, depletion of Caf1 homologues inhibited deadenylation of bulk RNA and resulted in an increase in average poly(A) tail length
Circular economy inspired imaginaries for sustainable innovations
In this chapter, Narayan and Tidström draw on the concept of imaginaries to show how Circular Economy (CE) can facilitate values that enable sustainable innovation. Innovation is key for sustainability, however, understanding and implementing sustainable innovation is challenging, and identifying the kind of actions that could direct sustainable innovations is important. The findings of this study indicate that CE-inspired imaginaries enable collaboration and by relating such imaginaries to common and shared social and cultural values, intermediaries could motivate actors into taking actions that contribute to sustainable innovation.fi=vertaisarvioitu|en=peerReviewed
The oncogenic transcription factor RUNX1/ETO corrupts cell cycle regulation to drive leukemic transformation
Oncogenic transcription factors such as the leukemic fusion protein RUNX1/ETO, which drives t(8;21) acute myeloid leukemia (AML), constitute cancer-specific but highly challenging therapeutic targets. We used epigenomic profiling data for an RNAi screen to interrogate the transcriptional network maintaining t(8;21) AML. This strategy identified Cyclin D2 (CCND2) as a crucial transmitter of RUNX1/ETO-driven leukemic propagation. RUNX1/ETO cooperates with AP-1 to drive CCND2 expression. Knockdown or pharmacological inhibition of CCND2 by an approved drug significantly impairs leukemic expansion of patient-derived AML cells and engraftment in immunodeficient murine hosts. Our data demonstrate that RUNX1/ETO maintains leukemia by promoting cell cycle progression and identifies G1 CCND-CDK complexes as promising therapeutic targets for treatment of RUNX1/ETO-driven AML
Geography and ecology shape the phylogenetic composition of Amazonian tree communities
Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.
Location: Amazonia.
Taxon: Angiosperms (Magnoliids; Monocots; Eudicots).
Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.
Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.
Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
- …