439 research outputs found

    Prospective, randomized, controlled, double-blind, multi-center, multinational study on the safety and efficacy of 6% Hydroxyethyl starch (HES) sOlution versus an Electrolyte solutioN In patients undergoing eleCtive abdominal Surgery:study protocol for the PHOENICS study

    Get PDF
    BACKGROUND: Hydroxyethyl starch (HES) solutions are used for volume therapy to treat hypovolemia due to acute blood loss and to maintain hemodynamic stability. This study was requested by the European Medicines Agency (EMA) to provide more evidence on the long-term safety and efficacy of HES solutions in the perioperative setting. METHODS: PHOENICS is a randomized, controlled, double-blind, multi-center, multinational phase IV (IIIb) study with two parallel groups to investigate non-inferiority regarding the safety of a 6% HES 130 solution (Volulyte 6%, Fresenius Kabi, Germany) compared with a crystalloid solution (Ionolyte, Fresenius Kabi, Germany) for infusion in patients with acute blood loss during elective abdominal surgery. A total of 2280 eligible patients (male and female patients willing to participate, with expected blood loss ≥ 500 ml, aged > 40 and ≤ 85 years, and ASA Physical status II–III) are randomly assigned to receive either HES or crystalloid solution for the treatment of hypovolemia due to surgery-induced acute blood loss in hospitals in up to 11 European countries. The dosing of investigational products (IP) is individualized to patients’ volume needs and guided by a volume algorithm. Patients are treated with IP for maximally 24 h or until the maximum daily dose of 30 ml/kg body weight is reached. The primary endpoint is the treatment group mean difference in the change from the pre-operative baseline value in cystatin-C-based estimated glomerular filtration rate (eGFR), to the eGFR value calculated from the highest cystatin-C level measured during post-operative days 1-3. Further safety and efficacy parameters include, e.g., combined mortality/major post-operative complications until day 90, renal function, coagulation, inflammation, hemodynamic variables, hospital length of stay, major post-operative complications, and 28-day, 90-day, and 1-year mortality. DISCUSSION: The study will provide important information on the long-term safety and efficacy of HES 130/0.4 when administered according to the approved European product information. The results will be relevant for volume therapy of surgical patients. TRIAL REGISTRATION: EudraCT 2016-002162-30. ClinicalTrials.govNCT0327854

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Measurement of the Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2β\beta measurement from B0J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0J/ψKS0)=(1.83±0.28)×105BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Opposite-side flavour tagging of B mesons at the LHCb experiment

    Get PDF
    The calibration and performance of the oppositeside flavour tagging algorithms used for the measurements of time-dependent asymmetries at the LHCb experiment are described. The algorithms have been developed using simulated events and optimized and calibrated with B + →J/ψK +, B0 →J/ψK ∗0 and B0 →D ∗− μ + νμ decay modes with 0.37 fb−1 of data collected in pp collisions at √ s = 7 TeV during the 2011 physics run. The oppositeside tagging power is determined in the B + → J/ψK + channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty is statistical and the second is systematic

    Measurement of the CP-violating phase phi_s in the decay Bs->J/psi phi

    Get PDF
    We present a measurement of the time-dependent CP-violating asymmetry in B_s -> J/psi phi decays, using data collected with the LHCb detector at the LHC. The decay time distribution of B_s -> J/psi phi is characterized by the decay widths Gamma_H and Gamma_L of the heavy and light mass eigenstates of the B_s-B_s-bar system and by a CP-violating phase phi_s. In a sample of about 8500 B_s -> J/psi phi events isolated from 0.37 fb^-1 of pp collisions at sqrt(s)=7 TeV we measure phi_s = 0.15 +/- 0.18 (stat) +/- 0.06 (syst) rad. We also find an average B_s decay width Gamma_s == (Gamma_L + Gamma_H)/2 = 0.657 +/- 0.009 (stat) +/- 0.008 (syst) ps^-1 and a decay width difference Delta Gamma_s == Gamma_L - Gamma_H} = 0.123 +/- 0.029 (stat) +/- 0.011 (syst) ps^-1. Our measurement is insensitive to the transformation (phi_s,DeltaGamma_s --> pi - phi_s, - Delta Gamma_s.Comment: 9 pages, 3 figure

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex

    Measurement of charged particle multiplicities in pppp collisions at s=7{\sqrt{s} =7}TeV in the forward region

    Get PDF
    The charged particle production in proton-proton collisions is studied with the LHCb detector at a centre-of-mass energy of s=7{\sqrt{s} =7}TeV in different intervals of pseudorapidity η\eta. The charged particles are reconstructed close to the interaction region in the vertex detector, which provides high reconstruction efficiency in the η\eta ranges 2.5<η<2.0-2.5<\eta<-2.0 and 2.0<η<4.52.0<\eta<4.5. The data were taken with a minimum bias trigger, only requiring one or more reconstructed tracks in the vertex detector. By selecting an event sample with at least one track with a transverse momentum greater than 1 GeV/c a hard QCD subsample is investigated. Several event generators are compared with the data; none are able to describe fully the multiplicity distributions or the charged particle density distribution as a function of η\eta. In general, the models underestimate the charged particle production

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex

    Measurements of the branching fractions of the decays B°s → D∓s K± and B°s → D¯sπ+

    Get PDF
    The decay mode B°s → D∓s K± allows for one of the theoretically cleanest measurements of the CKM angle γ through the study of time-dependent CP violation. This paper reports a measurement of its branching fraction relative to the Cabibbo-favoured mode B°s → D¯sπ+ based on a data sample corresponding to 0.37 fb¯¹ of proton-proton collisions at √s = 7TeV collected in 2011 with the LHCb detector. In addition, the ratio of B meson production fractions fs/fd, determined from semileptonic decays, together with the known branching fraction of the control channel B°s → D¯sπ+ is used to perform an absolute measurement of the branching fractions: B(B°s → D¯sπ+) = (2.95 ± 0.05 ± 0.17 -0.22 +0.18) × 10¯³ ; B(B°s → D∓s K±) = (1.90 ± 0.12 ± 0.13 -0.14 +0.12) × 10¯4 ; where the first uncertainty is statistical, the second the experimental systematic uncertainty, and the third the uncertainty due to f s/f
    corecore