132 research outputs found

    Magnetic Medical Capsule Robots

    Get PDF

    Systematic framework for performance evaluation of exoskeleton actuators

    Get PDF
    AbstractWearable devices, such as exoskeletons, are becoming increasingly common and are being used mainly for improving motility and daily life autonomy, rehabilitation purposes, and as industrial aids. There are many variables that must be optimized to create an efficient, smoothly operating device. The selection of a suitable actuator is one of these variables, and the actuators are usually sized after studying the kinematic and dynamic characteristics of the target task, combining information from motion tracking, inverse dynamics, and force plates. While this may be a good method for approximate sizing of actuators, a more detailed approach is necessary to fully understand actuator performance, control algorithms or sensing strategies, and their impact on weight, dynamic performance, energy consumption, complexity, and cost. This work describes a learning-based evaluation method to provide this more detailed analysis of an actuation system for ourXoTrunkexoskeleton. The study includes: (a) a real-world experimental setup to gather kinematics and dynamics data; (b) simulation of the actuation system focusing on motor performance and control strategy; (c) experimental validation of the simulation; and (d) testing in real scenarios. This study creates a systematic framework to analyze actuator performance and control algorithms to improve operation in the real scenario by replicating the kinematics and dynamics of the human–robot interaction. Implementation of this approach shows substantial improvement in the task-related performance when applied on a back-support exoskeleton during a walking task

    Laparoscopic Tissue Retractor Based on Local Magnetic Actuation

    Get PDF
    Magnetic instruments for laparoscopic surgery have the potential to enhance triangulation and reduce invasiveness, as they can be rearranged inside the abdominal cavity and do not need a dedicated port during the procedure. Onboard actuators can be used to achieve a controlled and repeatable motion at the interface with the tissue. However, actuators that can fit through a single laparoscopic incision are very limited in power and do not allow performance of surgical tasks such as lifting an organ. In this study, we present a tissue retractor based on local magnetic actuation (LMA). This approach combines two pairs of magnets, one providing anchoring and the other transferring motion to an internal mechanism connected to a retracting lever. Design requirements were derived from clinical considerations, while finite element simulations and static modeling were used to select the permanent magnets, set the mechanism parameters, and predict the lifting and supporting capabilities of the tissue retractor. A three-tier validation was performed to assess the functionality of the device. First, the retracting performance was investigated via a benchtop experiment, by connecting an increasing load to the lever until failure occurred, and repeating this test for different intermagnetic distances. Then, the feasibility of liver resection was studied with an ex vivo experiment, using porcine hepatic tissue. Finally, the usability and the safety of the device were tested in vivo on an anesthetized porcine model. The developed retractor is 154 mm long, 12.5 mm in diameter, and weights 39.16 g. When abdominal wall thickness is 2 cm, the retractor is able to lift more than ten times its own weight. The model is able to predict the performance with a relative error of 9.06 ± 0.52%. Liver retraction trials demonstrate that the device can be inserted via laparoscopic access, does not require a dedicated port, and can perform organ retraction. The main limitation is the reduced mobility due to the length of the device. In designing robotic instrument for laparoscopic surgery, LMA can enable the transfer of a larger amount of mechanical power than what is possible to achieve by embedding actuators on board. This study shows the feasibility of implementing a tissue retractor based on this approach and provides an illustration of the main steps that should be followed in designing a LMA laparoscopic instrument

    Wireless tissue palpation: Head characterization to improve tumor detection in soft tissue

    Get PDF
    For surgeons performing open procedures, the sense of touch is a valuable tool to directly access buried structures and organs, to identify their margins, detect tumors, and prevent undesired cuts. Minimally invasive surgical procedures provide great benefits for patients; however, they hinder the surgeon's ability to directly manipulate the tissue. In our previous work, we developed a Wireless Palpation Probe (WPP) to restore tissue palpation in Minimally Invasive Surgery (MIS) by creating a real-time stiffness distribution map of the target tissue. The WPP takes advantage of a field-based magnetic localization algorithm to measure its position, orientation, and tissue indentation depth, in addition to a barometric sensor measuring indentation tissue pressure. However, deformations of both the tissue and the silicone material used to cover the pressure sensors introduce detrimental nonlinearities in sensor measurements. In this work, we calibrated and characterized different diameter WPP heads with a new design allowing exchangeability and disposability of the probe head. Benchtop trials showed that this method can effectively reduce error in sensor pressure measurements up to 5% with respect to the reference sensor. Furthermore, we studied the effect of the head diameter on the device's spatial resolution in detecting tumor simulators embedded into silicone phantoms. Overall, the results showed a tumor detection rate over 90%, independent of the head diameter, when an indentation depth of 5 mm is applied on the tissue simulator

    Wireless Tissue Palpation: head characterization to improve tumor detection in soft tissue

    Get PDF
    Abstract For surgeons performing open procedures, the sense of touch is a valuable tool to directly access buried structures and organs, to identify their margins, detect tumors, and prevent undesired cuts. Minimally invasive surgical procedures provide great benefits for patients; however, they hinder the surgeon's ability to directly manipulate the tissue. In our previous work, we developed a Wireless Palpation Probe (WPP) to restore tissue palpation in Minimally Invasive Surgery (MIS) by creating a real-time stiffness distribution map of the target tissue. The WPP takes advantage of a field-based magnetic localization algorithm to measure its position, orientation, and tissue indentation depth, in addition to a barometric sensor measuring indentation tissue pressure. However, deformations of both the tissue and the silicone material used to cover the pressure sensors introduce detrimental nonlinearities in sensor measurements. In this work, we calibrated and characterized different diameter WPP heads with a new design allowing exchangeability and disposability of the probe head. Benchtop trials showed that this method can effectively reduce error in sensor pressure measurements up to 5 % with respect to the reference sensor. Furthermore, we studied the effect of the head diameter on the devices spatial resolution in detecting tumor simulators embedded into silicone phantoms. Overall, the results showed a tumor detection rate over 90 %, independent of the head diameter, when an indentation depth of at 5 mm is applied on the tissue simulator

    ARTICLE IN PRESS G Model

    Get PDF
    a b s t r a c t For surgeons performing open procedures, the sense of touch is a valuable tool to directly access buried structures and organs, to identify their margins, detect tumors, and prevent undesired cuts. Minimally invasive surgical procedures provide great benefits for patients; however, they hinder the surgeon's ability to directly manipulate the tissue. In our previous work, we developed a Wireless Palpation Probe (WPP) to restore tissue palpation in Minimally Invasive Surgery (MIS) by creating a real-time stiffness distribution map of the target tissue. The WPP takes advantage of a field-based magnetic localization algorithm to measure its position, orientation, and tissue indentation depth, in addition to a barometric sensor measuring indentation tissue pressure. However, deformations of both the tissue and the silicone material used to cover the pressure sensors introduce detrimental nonlinearities in sensor measurements. In this work, we calibrated and characterized different diameter WPP heads with a new design allowing exchangeability and disposability of the probe head. Benchtop trials showed that this method can effectively reduce error in sensor pressure measurements up to 5% with respect to the reference sensor. Furthermore, we studied the effect of the head diameter on the device's spatial resolution in detecting tumor simulators embedded into silicone phantoms. Overall, the results showed a tumor detection rate over 90%, independent of the head diameter, when an indentation depth of 5 mm is applied on the tissue simulator

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    Get PDF
    Peer reviewe

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe
    • …
    corecore