151 research outputs found

    Роль протеиназ крови и их ингибиторов в механизмах противовирусной защиты

    Get PDF
    Досліджено наявність трипсиноподібних протеїназ та їх інгібіторів у донорській крові людини, промислових відходах одержання гаммаглобуліну, комерційних вітчизняних препаратах (імуноглобулін, інтерферон, герпетична та туляремійна вакцини), у закордонних препаратах (протигрипозні вакцини — ''Інфлувак'', ''Ваксігрип'', ''Флюарікс'', вакцина проти гепатиту А — ''Аваксім''; препарати з крові — ''Фраксіпарин'' і ''Солкосерил''). З промислових відходів одержання гаммаглобуліну людини виділено ізоформу інгібітора трипсиноподібних протеїназ, що має захисну дію при зараженні експериментальних тварин смертельною дозою вірусу грипу A/PR/8/34 (А/Н1N1).The presence of the trypsin-like proteinases and their inhibitors in the blood of human donors, in industrial wastes of gamma-globulin, in commercial domestic preparations (immunoglobulin, interferon, vaccine for herpes and tularemia), in foreign preparations (anti-influenza vaccine — Influvac, Vaxigrір, Fluarix, vaccines for hepatitis A — Avaxim; preparations from blood — Fraxiparine, Solcoseryl) is studied. From the industrial wastes of the gamma-globulin production, an isoform of trypsin-like proteinases with protective activity at infection of experimental animals with a lethal dose of A/PR/8/34 (А/Н1N1) grippe is selected

    Have genetic targets for faecal pollution diagnostics and source tracking revolutionised water quality analysis yet?

    Full text link
    The impacts on faecal pollution analysis using nucleic acid-based methods, such as PCR and sequencing, in health-related water quality research were assessed by rigorous literature analysis. A wide range of application areas and study designs has been identified since the first application more than 30 years ago (>1,100 publications). Given the consistency of methods and assessment types, we suggest defining this emerging part of science as a new discipline: genetic faecal pollution diagnostics (GFPD) in health-related microbial water quality analysis. Undoubtedly, GFPD has already revolutionised faecal pollution detection and microbial source tracking, the current core applications. GFPD is also expanding to many other research areas, including infection and health risk assessment, evaluation of microbial water treatment, and support of wastewater surveillance. In addition, storage of DNA extracts allows for biobanking, which opens up new perspectives. The tools of GFPD can be combined with cultivation-based standardised faecal indicator enumeration, pathogen detection, and various environmental data types, in an integrated data analysis approach. This comprehensive meta-analysis provides the scientific status quo of this field, including trend analyses and literature statistics, outlining identified application areas, and discussing the benefits and challenges of nucleic acid-based analysis in GFPD

    Computational analysis of transitional airflow through packed columns of spheres using the finite volume technique

    Get PDF
    Copyright © 2010 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Computers and Chemical Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers and Chemical Engineering, Volume 34 Issue 6 (2010), DOI: 10.1016/j.compchemeng.2009.10.013We compare computational simulations of the flow of air through a packed column containing spherical particles with experimental and theoretical results for equivalent beds. The column contained 160 spherical particles at an aspect ratio N=7.14N=7.14, and the experiments and simulations were carried out at particle Reynolds numbers of (RedP=700−5000)(RedP=700−5000). Experimental measurements were taken of the pressure drop across the column and compared with the correlation of Reichelt (1972) using the fitted coefficients of Eisfeld and Schnitzlein (2001). An equivalent computational domain was prepared using Monte Carlo packing, from which computational meshes were generated and analysed in detail. Computational fluid dynamics calculations of the air flow through the simulated bed was then performed using the finite volume technique. Results for pressure drop across the column were found to correlate strongly with the experimental data and the literature correlation. The flow structure through the bed was also analysed in detail

    Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents

    Get PDF
    Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4»400»000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log10 7.2-8.0 marker equivalents (ME) 100 mL-1) and biologically treated wastewater samples (median log10 4.6-6.0 ME 100 mL-1) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe.Fil: Mayer, René E.. Vienna University of Technology; Austria. Interuniversity Cooperation Centre for Water and Health; AustriaFil: Reischer, Georg. Vienna University of Technology; AustriaFil: Ixenmaier, Simone K.. Vienna University of Technology; Austria. Interuniversity Cooperation Centre for Water and Health; AustriaFil: Derx, Julia. Vienna University of Technology; AustriaFil: Blaschke, Alfred Paul. Vienna University of Technology; AustriaFil: Ebdon, James E.. University of Brighton; Reino UnidoFil: Linke, Rita. Vienna University of Technology; Austria. Interuniversity Cooperation Centre Water And Health; AustriaFil: Egle, Lukas. Vienna University of Technology; AustriaFil: Ahmed, Warish. Csiro Land And Water; AustraliaFil: Blanch, Anicet R.. Universidad de Barcelona; EspañaFil: Byamukama, Denis. Makerere University; UgandaFil: Savill, Marion. Affordable Water Limited;Fil: Mushi, Douglas. Sokoine University Of Agriculture; TanzaniaFil: Cristobal, Hector Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Edge, Thomas A.. Canada Centre for Inland Waters. Environment and Climate Change Canada; CanadáFil: Schade, Margit A.. Bavarian Environment Agency; AlemaniaFil: Aslan, Asli. Georgia Southern University; Estados UnidosFil: Brooks, Yolanda M.. Michigan State University; Estados UnidosFil: Sommer, Regina. Interuniversity Cooperation Centre Water And Health; Austria. Medizinische Universitat Wien; AustriaFil: Masago, Yoshifumi. Tohoku University; JapónFil: Sato, Maria I.. Cia. Ambiental do Estado de Sao Paulo. Departamento de Análises Ambientais; BrasilFil: Taylor, Huw D.. University of Brighton; Reino UnidoFil: Rose, Joan B.. Michigan State University; Estados UnidosFil: Wuertz, Stefan. Nanyang Technological University. Singapore Centre for Environmental Life Sciences Engineering and School of Civil and Environmental Engineering; SingapurFil: Shanks, Orin. U.S. Environmental Protection Agency; Estados UnidosFil: Piringer, Harald. Vrvis Research Center; AustriaFil: Mach, Robert L.. Vienna University of Technology; AustriaFil: Savio, Domenico. Karl Landsteiner University of Health Sciences; AustriaFil: Zessner, Matthias. Vienna University of Technology; AustriaFil: Farnleitner, Andreas. Vienna University of Technology; Austria. Interuniversity Cooperation Centre Water And Health; Austria. Karl Landsteiner University of Health Sciences; Austri

    Integrated frameworks for assessing and managing health risks in the context of managed aquifer recharge with river water

    Get PDF
    Integrated assessment and management of water resources for the supply of potable water is increasingly important in light of projected water scarcity in many parts of the world. This article develops frameworks for regional-level waterborne human health risk assessment of chemical and microbiological contamination to aid water management, incorporating economic aspects of health risks. Managed aquifer recharge with surface water from a river in Southern Finland is used as an illustrative case. With a starting point in watershed governance, stakeholder concerns, and value-at-risk concepts, we merge common methods for integrative health risk analysis of contaminants to describe risks and impacts dynamically and broadly. This involves structuring analyses along the risk chain: sources—releases—environmental transport and fate—exposures—health effects—socio-economic impacts—management responses. Risks attributed to contaminants are embedded in other risks, such as contaminants from other sources, and related to benefits from improved water quality. A set of models along this risk chain in the case is presented. Fundamental issues in the assessment are identified, including 1) framing of risks, scenarios, and choices; 2) interaction of models and empirical information; 3) time dimension; 4) distributions of risks and benefits; and 5) uncertainties about risks and controls. We find that all these combine objective and subjective aspects, and involve value judgments and policy choices. We conclude with proposals for overcoming conceptual and functional divides and lock-ins to improve modeling, assessment, and management of complex water supply schemes, especially by reflective solution-oriented interdisciplinary and multi-actor deliberation

    Taxonomic Abstract for the species.

    No full text

    Taxonomic Abstract for the genera.

    No full text
    corecore