332 research outputs found

    Liceum ogólnokształcące – jakie zmiany czekają nas w roku szkolnym 2012/2013?

    Get PDF
    Artykuł z numeru 3/2012 internetowego czasopisma edukacyjnego ORE "Trendy

    Poradnik dla dyrektora liceum ogólnokształcącego - Ramowe plany nauczania

    Get PDF
    Poradnik dla dyrektora liceum ogólnokształcącego dot. realizacji podstawowych ram nauczania. Publikacja powstała w ramach projektu „Wdrożenie podstawy programowej kształcenia ogólnego w poszczególnych typach szkół, ze szczególnym uwzględnieniem II i IV etapu edukacyjnego

    Rapid clearance of cellular debris by microglia limits secondary neuronal cell death after brain injury in vivo

    Get PDF
    Moderate or severe traumatic brain injury (TBI) causes widespread neuronal cell death. Microglia, the resident macrophages of the brain, react to injury by migrating to the lesion site, where they phagocytose cellular debris. Microglial phagocytosis can have both beneficial (e.g. debris clearance) and detrimental (e.g. respiratory burst, phagoptosis) consequences. Hence, whether the overall effect of microglial phagocytosis after brain injury in vivo is neuroprotective or neurotoxic is not known. Here, we establish a system with which to carry out dynamic real-time analyses of the mechanisms regulating cell death after brain injury in vivo. We show that mechanical injury to the larval zebrafish brain induces distinct phases of primary and secondary cell death. Excitotoxicity contributes to secondary cell death in zebrafish, reflecting findings from mammals. Microglia arrive at the lesion site within minutes of injury, where they rapidly engulf dead cells. Importantly, the rate of secondary cell death is increased when the rapid removal of cellular debris by microglia is reduced pharmacologically or genetically. In summary, our results provide evidence that microglial debris clearance is neuroprotective after brain injury in vivo

    Glia, sympathetic activity and cardiovascular disease

    Get PDF
    New Findings What is the topic of this review? In this review, we discuss recent findings that provide a novel insight into the mechanisms that link glial cell function with the pathogenesis of cardiovascular disease, including systemic arterial hypertension and chronic heart failure. What advances does it highlight? We discuss how glial cells may influence central presympathetic circuits, leading to maladaptive and detrimental increases in sympathetic activity and contributing to the development and progression of cardiovascular disease. Increased activity of the sympathetic nervous system is associated with the development of cardiovascular disease and may contribute to its progression. Vasomotor and cardiac sympathetic activities are generated by the neuronal circuits located in the hypothalamus and the brainstem. These neuronal networks receive multiple inputs from the periphery and other parts of the CNS and, at a local level, may be influenced by their non-neuronal neighbours, in particular glial cells. In this review, we discuss recent experimental evidence suggesting that astrocytes and microglial cells are able to modulate the activity of sympathoexcitatory neural networks in disparate physiological and pathophysiological conditions. We focus on the chemosensory properties of astrocytes residing in the rostral ventrolateral medulla oblongata and discuss signalling mechanisms leading to glial activation during brain hypoxia and inflammation. Alterations in these mechanisms may lead to heightened activity of sympathoexcitatory CNS circuits and contribute to maladaptive and detrimental increases in sympathetic tone associated with systemic arterial hypertension and chronic heart failure

    Transplanted human adipose tissue-derived stem cells engraft and induce regeneration in mice olfactory neuroepithelium in response to dichlobenil subministration

    Get PDF
    We used immunodeficient mice, whose dorsomedial olfactory region was permanently damaged by dichlobenil inoculation, to test the neuroregenerative properties of transplanted human adipose tissue-derived stem cells after 30 and 60 days. Analysis of polymerase chain reaction bands revealed that stem cells preferentially engrafted in the lesioned olfactory epithelium compared with undamaged mucosa of untreated transplanted mice. Although basal cell proliferation in untransplanted lesioned mice did not give rise to neuronal cells in the olfactory mucosa, we observed clusters of differentiating olfactory cells in transplanted mice. After 30 days, and even more at 60 days, epithelial thickness was partially recovered to normal values, as also the immunohistochemical properties. Functional reactivity to odorant stimulation was also confirmed through electroolfactogram recording in the dorsomedial epithelium. Furthermore, we demonstrated that engrafted stem cells fused with mouse cells in the olfactory organ, even if heterokaryons detected were too rare to hypothesize they directly repopulated the lesioned epithelium. The data reported prove that the migrating transplanted stem cells were able to induce a neuroregenerative process in a specific lesioned sensory area, enforcing the perspective that they could become an available tool for stem cell therapy. \ua9 The Author 2014. Published by Oxford University Press. All rights reserved

    Regulation of learning and memory by meningeal immunity: a key role for IL-4

    Get PDF
    Proinflammatory cytokines have been shown to impair cognition; consequently, immune activity in the central nervous system was considered detrimental to cognitive function. Unexpectedly, however, T cells were recently shown to support learning and memory, though the underlying mechanism was unclear. We show that one of the steps in the cascade of T cell–based support of learning and memory takes place in the meningeal spaces. Performance of cognitive tasks led to accumulation of IL-4–producing T cells in the meninges. Depletion of T cells from meningeal spaces skewed meningeal myeloid cells toward a proinflammatory phenotype. T cell–derived IL-4 was critical, as IL-4−/− mice exhibited a skewed proinflammatory meningeal myeloid cell phenotype and cognitive deficits. Transplantation of IL-4−/− bone marrow into irradiated wild-type recipients also resulted in cognitive impairment and proinflammatory skew. Moreover, adoptive transfer of T cells from wild-type into IL-4−/− mice reversed cognitive impairment and attenuated the proinflammatory character of meningeal myeloid cells. Our results point to a critical role for T cell–derived IL-4 in the regulation of cognitive function through meningeal myeloid cell phenotype and brain-derived neurotrophic factor expression. These findings might lead to the development of new immune-based therapies for cognitive impairment associated with immune decline

    Місце адміністративної юстиції в системі права України

    Get PDF
    Стаття присвячена питанням місця норм, що регулюють порядок діяльності адміністративних судів в Україні, у національній системі права. Окрему увагу приділено проблемі існування адміністративного процесуального права та варіантам йог існування.Статья посвящена вопросам места норм, регулирующих порядок деятельности административных судов в Украине, в национальной системе права. Отдельное внимание уделено проблеме существования административного процессуального права и вариантам его существования.Article is devoted to substantiation of the place of norms, regulating the order of activity of administrative courts in Ukraine in the national system of law. Separate attention is given to the problem of existence of administrative process law and variants of it's existence

    B cell and/or autoantibody deficiency do not prevent neuropsychiatric disease in murine systemic lupus erythematosus

    Get PDF
    Background: Neuropsychiatric lupus (NPSLE) can be one of the earliest clinical manifestations in human lupus. However, its mechanisms are not fully understood. In lupus, a compromised blood-brain barrier may allow for the passage of circulating autoantibodies into the brain, where they can induce neuropsychiatric abnormalities including depression-like behavior and cognitive abnormalities. The purpose of this study was to determine the role of B cells and/or autoantibodies in the pathogenesis of murine NPSLE. Methods: We evaluated neuropsychiatric manifestations, brain pathology, and cytokine expression in constitutively (JhD/MRL/lpr) and conditionally (hCD20-DTA/MRL/lpr, inducible by tamoxifen) B cell-depleted mice as compared to MRL/lpr lupus mice. Results: We found that autoantibody levels were negligible (JhD/MRL/lpr) or significantly reduced (hCD20-DTA/MRL/lpr) in the serum and cerebrospinal fluid, respectively. Nevertheless, both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice showed profound depression-like behavior, which was no different from MRL/lpr mice. Cognitive deficits were also observed in both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice, similar to those exhibited by MRL/lpr mice. Furthermore, although some differences were dependent on the timing of depletion, central features of NPSLE in the MRL/lpr strain including increased blood-brain barrier permeability, brain cell apoptosis, and upregulated cytokine expression persisted in B cell-deficient and B cell-depleted mice. Conclusions: Our study surprisingly found that B cells and/or autoantibodies are not required for key features of neuropsychiatric disease in murine NPSLE

    Expression Profiling of Autism Candidate Genes during Human Brain Development Implicates Central Immune Signaling Pathways

    Get PDF
    The Autism Spectrum Disorders (ASD) represent a clinically heterogeneous set of conditions with strong hereditary components. Despite substantial efforts to uncover the genetic basis of ASD, the genomic etiology appears complex and a clear understanding of the molecular mechanisms underlying Autism remains elusive. We hypothesized that focusing gene interaction networks on ASD-implicated genes that are highly expressed in the developing brain may reveal core mechanisms that are otherwise obscured by the genomic heterogeneity of the disorder. Here we report an in silico study of the gene expression profile from ASD-implicated genes in the unaffected developing human brain. By implementing a biologically relevant approach, we identified a subset of highly expressed ASD-candidate genes from which interactome networks were derived. Strikingly, immune signaling through NFκB, Tnf, and Jnk was central to ASD networks at multiple levels of our analysis, and cell-type specific expression suggested glia—in addition to neurons—deserve consideration. This work provides integrated genomic evidence that ASD-implicated genes may converge on central cytokine signaling pathways
    corecore