65 research outputs found
Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.
Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression
Tumor Necrosis Factor Receptor Associated Factor 6 Is Not Required for Atherogenesis in Mice and Does Not Associate with Atherosclerosis in Humans
BACKGROUND: Tumor necrosis factor receptor-associated factors (TRAFs) are important signaling molecules for a variety of pro-atherogenic cytokines including CD40L, TNF alpha, and IL1beta. Several lines of evidence identified TRAF6 as a pro-inflammatory signaling molecule in vitro and we previously demonstrated overexpression of TRAF6 in human and Murine atherosclerotic plaques. This study investigated the role of TRAF6-deficiency in mice developing atherosclerosis, a chronic inflammatory disease. METHODOLOGY/PRINCIPAL FINDINGS: Lethally irradiated low density lipoprotein receptor-deficient mice (TRAF6(+/+)/LDLR(-/-)) were reconstituted with TRAF6-deficient fetal liver cells (FLC) and consumed high cholesterol diet for 18 weeks to assess the relevance of TRAF6 in hematopoietic cells for atherogenesis. Additionally, TRAF6(+/-)/LDLR(-/-) mice received TRAF6-deficient FLC to gain insight into the role of TRAF6 deficiency in resident cells. Surprisingly, atherosclerotic lesion size did not differ between the three groups in both aortic roots and abdominal aortas. Similarly, no significant differences in plaque composition could be observed as assessed by immunohistochemistry for macrophages, lipids, smooth muscle cells, T-cells, and collagen. In accord, in a small clinical study TRAF6/GAPDH total blood RNA ratios did not differ between groups of patients with stable coronary heart disease (0.034+/-0.0021, N = 178), acute coronary heart disease (0.029+/-0.0027, N = 70), and those without coronary heart disease (0.032+/-0.0016, N = 77) as assessed by angiography. CONCLUSION: Our study demonstrates that TRAF6 is not required for atherogenesis in mice and does not associate with clinical disease in humans. These data suggest that pro- and anti-inflammatory features of TRAF6 signaling outweigh each other in the context of atherosclerosis
Mechanistic insight into RET kinase inhibitors targeting the DFG-out conformation in RET-rearranged cancer
Oncogenic fusion events have been identified in a broad range of tumors. Among them, RET rearrangements represent distinct and potentially druggable targets that are recurrently found in lung adenocarcinomas. Here, we provide further evidence that current anti-RET drugs may not be potent enough to induce durable responses in such tumors. We report that potent inhibitors such as AD80 or ponatinib that stably bind in the DFG-out conformation of RET may overcome these limitations and selectively kill RET-rearranged tumors. Using chemical genomics in conjunction with phosphoproteomic analyses in RET-rearranged cells we identify the CCDC6-RETI788N mutation and drug-induced MAPK pathway reactivation as possible mechanisms, by which tumors may escape the activity of RET inhibitors. Our data provide mechanistic insight into the druggability of RET kinase fusions that may be of help for the development of effective therapies targeting such tumors
OSIRIS-REx Encounters Bennu: Initial Assessment from the Approach Phase
The OSIRIS-REx spacecraft launched on September 8, 2016, on a seven-year journey to return samples from asteroid (101955) Bennu. This presentation summarizes the scientific results from the Approach and Preliminary Survey phases. Bennu observations are set to begin on August 17, 2018,when the asteroid is bright enough for detection by the PolyCam. PolyCam and MapCam collect data to survey the asteroid environment for any hazards and characterize the asteroid point-source photometric properties. Resolved images acquired during final approach, starting in late October 2018, allow the creation of a shape model using stereophotoclinometry (SPC), needed by both the navigation team and science planners. The OVIRS and OTES spectrometers characterize the point- source spectral properties over a full rotation period, providing a first look at any features and thermophysical properties. TAGSAM is released from the launch container and deployed into the sampling configuration then returned to the stow position.Preliminary Survey follows the Approach Phase in early December 2018. This phase consists of a series of hyperbolic trajectories that cross over the North and South poles and the equator of Bennu at a close-approach distance of 7 km. Images from these Preliminary Survey passes provide data to complete the 75-cm resolution SPC global shape model and solve for the rotation state. Once the shape model is complete, the asteroid coordinate system is defined for co-registration of all data products. These higher-resolution images also constrain the photometric properties and allow for an initial assessment of the geology. In Preliminary Survey the team also obtains the first OLA data, providing a measure of the surface topography. OVIRS and OTES collect data as "ride-along" instruments, with the spacecraft pointing driven by imaging constraints. These data provide a first look at the spectral variation across the surface of Bennu. Radio science measurements, combined with altimetry and imagery, determine Bennu's mass, a prerequisite to placing the spacecraft into orbit in late December 2018. Together, data from the Approach and Preliminary Survey phases set the stage for the extensive mapping planned for 2019. These dates are the baseline plan. Any contingency or unexpected discovery may change this mission profile
Multiple effects of toxins isolated from Crotalus durissus terrificus on the hepatitis C virus life cycle
Hepatitis C virus (HCV) is one of the main causes of liver disease and transplantation worldwide. Current therapy is expensive, presents additional side effects and viral resistance has been described. Therefore, studies for developing more efficient antivirals against HCV are needed. Compounds isolated from animal venoms have shown antiviral activity against some viruses such as Dengue virus, Yellow fever virus and Measles virus. In this study, we evaluated the effect of the complex crotoxin (CX) and its subunits crotapotin (CP) and phospholipase A2 (PLA2-CB) isolated from the venom of Crotalus durissus terrificus on HCV life cycle. Huh 7.5 cells were infected with HCVcc JFH-1 strain in the presence or absence of these toxins and virus was titrated by focus formation units assay or by qPCR. Toxins were added to the cells at different time points depending on the stage of virus life cycle to be evaluated. The results showed that treatment with PLA2-CB inhibited HCV entry and replication but no effect on HCV release was observed. CX reduced virus entry and release but not replication. By treating cells with CP, an antiviral effect was observed on HCV release, the only stage inhibited by this compound. Our data demonstrated the multiple antiviral effects of toxins from animal venoms on HCV life cycle
TOI-836 : a super-Earth and mini-Neptune transiting a nearby K-dwarf
Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (∼200 mas yr−1), low metallicity ([Fe/H]≈−0.28) K-dwarf with a mass of 0.68 ± 0.05 M⊙ and a radius of 0.67 ± 0.01 R⊙. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 R⊕ super-Earth in a 3.82 day orbit, placing it directly within the so-called ‘radius valley’. The outer planet, TOI-836 c, is a 2.59 ± 0.09 R⊕ mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 M⊕, while TOI-836 c has a mass of 9.6 ± 2.6 M⊕. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet.Publisher PDFPeer reviewe
TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf
We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364)
using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (
mag), high proper motion ( mas yr), low metallicity
([Fe/H]) K-dwarf with a mass of M and a
radius of R. We obtain photometric follow-up
observations with a variety of facilities, and we use these data-sets to
determine that the inner planet, TOI-836 b, is a R
super-Earth in a 3.82 day orbit, placing it directly within the so-called
'radius valley'. The outer planet, TOI-836 c, is a R
mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that
TOI-836 b has a mass of M , while TOI-836 c has a mass
of M. Photometric observations show Transit Timing
Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are
no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by
an undetected exterior planet
In vivo hippocampal subfield volumes in bipolar disorder—A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group
The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta‐Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1‐weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed‐effects models and mega‐analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = −0.20), cornu ammonis (CA)1 (d = −0.18), CA2/3 (d = −0.11), CA4 (d = −0.19), molecular layer (d = −0.21), granule cell layer of dentate gyrus (d = −0.21), hippocampal tail (d = −0.10), subiculum (d = −0.15), presubiculum (d = −0.18), and hippocampal amygdala transition area (d = −0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non‐users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD
2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S
- …