169 research outputs found
Event-based processing of single photon avalanche diode sensors
Single Photon Avalanche Diode sensor arrays operating in direct time of flight mode can perform 3D imaging using pulsed lasers. Operating at high frame rates, SPAD imagers typically generate large volumes of noisy and largely redundant spatio-temporal data. This results in communication bottlenecks and unnecessary data processing. In this work, we propose a neuromorphic processing solution to this problem. By processing the spatio-temporal patterns generated by the SPADs in a local, event-based manner, the proposed 128 imes 128 pixel sensor-processor system reduces the size of output data from the sensor by orders of magnitude while increasing the utility of the output data in the context of challenging recognition tasks. To test the proposed system, the first large scale complex SPAD imaging dataset is captured using an existing 32 imes 32 pixel sensor. The generated dataset consists of 24000 recordings and involves high-speed view-invariant recognition of airplanes with background clutter. The frame-based SPAD imaging dataset is converted via several alternative methods into event-based data streams and processed using the proposed 125 imes 125 receptive field neuromorphic processor as well as a range of feature extractor networks and pooling methods. The output of the proposed event generation methods are then processed by an event-based feature extraction and classification system implemented in FPGA hardware. The event-based processing methods are compared to processing the original frame-based dataset via frame-based but otherwise identical architectures. The results show the event-based methods are superior to the frame-based approach both in terms of classification accuracy and output data-rate
A novel compartment, the 'subqpical stem' of the aerial hyphae, is the location of a sigN-dependent, developmentally distinct transcription in Streptomyces coelicolor.
Streptomyces coelicolor has nine SigB-like RNA polymerase sigma factors, several of them implicated in morphological differentiation and/or responses to different stresses. One of the nine, SigN, is the focus of this article. A constructed sigN null mutant was delayed in development and exhibited a bald phenotype when grown on minimal medium containing glucose as carbon source. One of two distinct sigN promoters, sigNP1, was active only during growth on solid medium, when its activation coincided with aerial hyphae formation. Transcription from sigNP1 was readily detected in several whi mutants (interrupted in morphogenesis of aerial mycelium into spores), but was absent from all bld mutants tested, suggesting that sigNP1 activity was restricted to the aerial hyphae. It also depended on sigN, thus sigN was autoregulated. Mutational and transcription studies revealed no functional significance to the location of sigN next to sigF, encoding another SigB-like sigma factor. We identified another potential SigN target, nepA, encoding a putative small secreted protein. Transcription of nepA originated from a single, aerial hyphae-specific and sigN-dependent promoter. While in vitro run-off transcription using purified SigN on the Bacillus subtilis ctc promoter confirmed that SigN is an RNA polymerase sigma factor, SigN failed to initiate transcription from sigNP1 and from the nepA promoter in vitro. Additional in vivo data indicated that further nepA upstream sequences, which are likely to bind a potential activator, are required for successful transcription. Using a nepA–egfp transcriptional fusion we located nepA transcription to a novel compartment, the ‘subapical stem’ of the aerial hyphae. We suggest that this newly recognized compartment defines an interface between the aerial and vegetative parts of the Streptomyces colony and might also be involved in communication between these two compartments
High throughput toxicity screening and intracellular detection of nanomaterials
EC FP7 NANoREG (Grant Agreement NMP4-LA-2013-310584)Free PMC Article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215403/With the growing numbers of nanomaterials (NMs), there is a great demand for
rapid and reliable ways of testing NM safety—preferably using in vitro
approaches, to avoid the ethical dilemmas associated with animal research. Data
are needed for developing intelligent testing strategies for risk assessment of
NMs, based on grouping and read-across approaches. The adoption of high
throughput screening (HTS) and high content analysis (HCA) for NM toxicity
testing allows the testing of numerous materials at different concentrations and
on different types of cells, reduces the effect of inter-experimental variation, and
makes substantial savings in time and cost.info:eu-repo/semantics/publishedVersio
Burnout syndrome among psychiatric trainees in 22 countries: Risk increased by long working hours, lack of supervision, and psychiatry not being first career choice
Background: Postgraduate medical trainees experience high rates of burnout, but evidence regarding psychiatric trainees is missing. We aim to determine burnout rates among psychiatric trainees, and identify individual, educational and work-related factors associated with severe burnout. Methods: In an online survey psychiatric trainees from 22 countries were asked to complete the Maslach Burnout Inventory (MBI-GS) and provide information on individual, educational and work-related parameters. Linear mixed models were used to predict the MBI-GS scores, and a generalized linear mixed model to predict severe burnout. Results: This is the largest study on burnout and training conditions among psychiatric trainees to date. Complete data were obtained from 1980 out of 7625 approached trainees (26%; range 17.8-65.6%). Participants were 31.9 (SD 5.3) years old with 2.8 (SD 1.9) years of training. Severe burnout was found in 726 (36.7%) trainees. The risk was higher for trainees who were younger (P < 0.001), without children (P = 0.010), and had not opted for psychiatry as a first career choice (P = 0.043). After adjustment for socio-demographic characteristics, years in training and country differences in burnout, severe burnout remained associated with long working hours (P < 0.001), lack of supervision (P < 0.001), and not having regular time to rest (P = 0.001). Main findings were replicated in a sensitivity analysis with countries with response rate above 50%. Conclusions: Besides previously described risk factors such as working hours and younger age, this is the first evidence of negative influence of lack of supervision and not opting for psychiatry as a first career choice on trainees' burnout
Impact of safety-related dose reductions or discontinuations on sustained virologic response in HCV-infected patients: Results from the GUARD-C Cohort
BACKGROUND:
Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice.
METHODS:
A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively.
RESULTS:
SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced 651 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with 651 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not 655.
CONCLUSIONS:
In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin
Bloom’s Syndrome and PICH Helicases Cooperate with Topoisomerase IIα in Centromere Disjunction before Anaphase
Centromeres are specialized chromosome domains that control chromosome segregation during mitosis, but little is known about the mechanisms underlying the maintenance of their integrity. Centromeric ultrafine anaphase bridges are physiological DNA structures thought to contain unresolved DNA catenations between the centromeres separating during anaphase. BLM and PICH helicases colocalize at these ultrafine anaphase bridges and promote their resolution. As PICH is detectable at centromeres from prometaphase onwards, we hypothesized that BLM might also be located at centromeres and that the two proteins might cooperate to resolve DNA catenations before the onset of anaphase. Using immunofluorescence analyses, we demonstrated the recruitment of BLM to centromeres from G2 phase to mitosis. With a combination of fluorescence in situ hybridization, electron microscopy, RNA interference, chromosome spreads and chromatin immunoprecipitation, we showed that both BLM-deficient and PICH-deficient prometaphase cells displayed changes in centromere structure. These cells also had a higher frequency of centromeric non disjunction in the absence of cohesin, suggesting the persistence of catenations. Both proteins were required for the correct recruitment to the centromere of active topoisomerase IIα, an enzyme specialized in the catenation/decatenation process. These observations reveal the existence of a functional relationship between BLM, PICH and topoisomerase IIα in the centromere decatenation process. They indicate that the higher frequency of centromeric ultrafine anaphase bridges in BLM-deficient cells and in cells treated with topoisomerase IIα inhibitors is probably due not only to unresolved physiological ultrafine anaphase bridges, but also to newly formed ultrafine anaphase bridges. We suggest that BLM and PICH cooperate in rendering centromeric catenates accessible to topoisomerase IIα, thereby facilitating correct centromere disjunction and preventing the formation of supernumerary centromeric ultrafine anaphase bridges
Firefly Luciferase and Rluc8 Exhibit Differential Sensitivity to Oxidative Stress in Apoptotic Cells
Over the past decade, firefly Luciferase (fLuc) has been used in a wide range of biological assays, providing insight into gene regulation, protein-protein interactions, cell proliferation, and cell migration. However, it has also been well established that fLuc activity can be highly sensitive to its surrounding environment. In this study, we found that when various cancer cell lines (HeLa, MCF-7, and 293T) stably expressing fLuc were treated with staurosporine (STS), there was a rapid loss in bioluminescence. In contrast, a stable variant of Renilla luciferase (RLuc), RLuc8, exhibited significantly prolonged functionality under the same conditions. To identify the specific underlying mechanism(s) responsible for the disparate sensitivity of RLuc8 and fLuc to cellular stress, we conducted a series of inhibition studies that targeted known intracellular protein degradation/modification pathways associated with cell death. Interestingly, these studies suggested that reactive oxygen species, particularly hydrogen peroxide (H2O2), was responsible for the diminution of fLuc activity. Consistent with these findings, the direct application of H2O2 to HeLa cells also led to a reduction in fLuc bioluminescence, while H2O2 scavengers stabilized fLuc activity. Comparatively, RLuc8 was far less sensitive to ROS. These observations suggest that fLuc activity can be substantially altered in studies where ROS levels become elevated and can potentially lead to ambiguous or misleading findings
Detection and elimination of cellular bottlenecks in protein-producing yeasts
Yeasts are efficient cell factories and are commonly used for the production of recombinant proteins for biopharmaceutical and industrial purposes. For such products high levels of correctly folded proteins are needed, which sometimes requires improvement and engineering of the expression system. The article summarizes major breakthroughs that led to the efficient use of yeasts as production platforms and reviews bottlenecks occurring during protein production. Special focus is given to the metabolic impact of protein production. Furthermore, strategies that were shown to enhance secretion of recombinant proteins in different yeast species are presented
- …