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Abstract—Single Photon Avalanche Diode sensor arrays
operating in direct time of flight mode can perform 3D imaging
using pulsed lasers. Operating at high frame rates, SPAD
imagers typically generate large volumes of noisy and largely
redundant spatio-temporal data. This results in communica-
tion bottlenecks and unnecessary data processing. In this
work, we propose a neuromorphic processing solution to
this problem. By processing the spatio-temporal patterns
generated by the SPADs in a local, event-based manner,
the proposed 128×128 pixel sensor-processorsystem reduces
the size of output data from the sensor by orders of magnitude
while increasing the utility of the output data in the context of
challenging recognition tasks. To test the proposed system,
the first large scale complex SPAD imaging dataset is captured using an existing 32 × 32 pixel sensor. The generated
dataset consists of 24000 recordings and involves high-speed view-invariant recognition of airplanes with background
clutter. The frame-based SPAD imaging dataset is converted via several alternative methods into event-baseddata streams
and processed using the proposed 125×125 receptive field neuromorphic processor as well as a range of feature extractor
networks and pooling methods. The output of the proposed event generation methods are then processed by an event-
based feature extraction and classification system implemented in FPGA hardware. The event-based processing methods
are compared to processing the original frame-based dataset via frame-based but otherwise identical architectures. The
results show the event-based methods are superior to the frame-based approach both in terms of classification accuracy
and output data-rate.

Index Terms— Single photon avalanche diode, event-based vision, event-based processors, feature extraction.

I. INTRODUCTION

A. Single Phone Avalanche Diodes Sensor

ASINGLE Photon Avalance Diode (SPAD) is a type
of photo-detector that comprises of a reversed biased
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photo-diode operated just below the breakdown voltage and as
such is able to detect individual incoming photons from the
environment [1]. This ability to detect single photons enables
SPAD cells to calculate precise photon timing information.
Integrating an array of SPAD detectors onto a single CMOS
chip and using high precision laser illuminators allows the
development of SPAD cameras, which can capture high-
speed 3D images under extremely low-light conditions. SPAD
array cameras have a broad range of applications from mil-
itary, meteorology, space, augmented reality, remote sensing,
autonomous robotics [2], [3]. SPAD imagers can operate in
either photon timing or photon counting modes. Photon timing
or Time Of Flight (TOF) mode techniques can be grouped
into direct TOF or (DTOF) and indirect (ITOF) categories.
DTOF methods directly measure the time delay by means of
a very accurate high-speed timer or a Time-to-Digital (TDC)
converter situated in the pixel. In the mode, each pixel uses
a high speed counter to measure the time interval it takes for
photons from an illuminating laser pulse to reach the object
being imaged and return to the sensor. By measuring the
time it takes for light to travel to the target and back the
imager captures a 3D image of the environment. Depending
on the accuracy or resolution of the timer, this method is
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Fig. 1. Conventional and neuromorphic SPAD DTOF data processing.
(a) SPAD imager in DTOF mode using a pulsed laser illuminator.
Using SPAD sensors in Direct-Time of Flight (DTOF) mode enables the
capture of three-dimensional images with a single camera. (b) Standard
approach to processing SPAD imaging data using ON-chip counters and
OFF-chip processing. (c) Proposed event-based approach to SPAD data
processing.

typically used for long (kilometers) distance measurements
and at very high precision (millimeter) depth resolutions this
mode of operation is the one used in this work and is shown in
Figure 1(a). The Indirect TOF method in contrast reconstructs
the time delay (hence distance) from the measurement of the
phase delay of the reflected signal when compared to the
periodic emitted light signal. This technique is more suited
to short or medium distances (tens of meters) and with depth
resolutions of some centimeters.

The second mode of operation for the SPAD imager is
photon counting mode. Here the imager counts number of
returning photons from the illuminating laser or background
illumination. In this mode, the sensor operates in a similar
manner to a conventional 2D imager with high sensitivity that
is capable of detecting single photons.

B. Event-Based Processing and SPAD
The most common approach to processing data from flash

LADAR using SPAD array imagers, has been to encode the

time of flight of the arriving photons using high precision
counters for each SPAD cell and to transfer this timing
data off-chip for processing [1]. This approach typically
involves as a first step some form of averaging over a large
number of frames which effectively removes the possibility
of on-chip processing. This transfer process also creates an
information bottleneck which is currently one of the major
limiting factors in the speed of operation of high-frame rate
flash LADAR SPAD imaging cameras. In addition, the use
of conventional CPUs or GPUs for processing this temporal
data makes processing SPAD data computationally intensive
using conventional signal processing techniques and results
in significant power and hardware requirements. These data
issues have motivated the development of novel hardware-
based solutions such as in-pixel histogram [4], [5].

The attributes that make SPAD data challenging for conven-
tional processors, when combined with the significant level of
temporal redundancy present in real-world visual data, makes
the SPAD cell activation patterns ideal for event-based and
spiking neuromorphic processors that are designed to operate
directly on noisy temporal data in a parallel fashion.

While the conversion of high data-rate DTOF SPAD data
into local event-based features is entirely novel, previous
works have demonstrated the utility of taking bio-inspired
approach to SPAD processing. In [6], Berkovich et al. present
a scalable 20 × 20 SPAD imaging array using asynchronous
Address Event Representation (AER) readout. In [7] the
same approach is proposed for use in Positron Emission
Tomography applications. The AER protocol is an efficient
communication protocol for sparse event-based data which
reports events as they occur removing the need for global
frames [8]. In these works, the SPAD cells operate in an ITOF
photon counting mode where an analog photon-counting
circuit counts incoming photon until the counter reaches
a preset threshold causing the pixel to generate an event
indicating a preset level of illumination. This mode of
operation is similar to previously proposed non-SPAD event-
based sensors [9] albeit with the advantage of the SPAD’s
high quantum efficiency. In contrast, the design proposed in
this work seeks to combine the inherently temporal nature
of DTOF SPAD spatio-temporal data with neuromorphic
event-based feature extraction and processing.

In the proposed approach, which we call the First-AND
system, instead of encoding, storing and transferring the high-
resolution, (typically 16 bit) photon time of flight data off-chip
for processing, the measurement of the absolute time of
flight of the laser pulse is abandoned entirely in favor of
a neuromorphic processor that operates directly in the time
domain and on the inter-spike or inter-latch intervals within
local regions of the SPAD array. Thus, instead of recording
and transferring time of flight information only the relative
timing of SPAD cell latching events are detected by the system.
The proposed approach illustrated in Figure 1 motivates the
development and hardware implementation of event-based
feature extraction algorithms and circuits that generate sparse
event-based local representations from the non-sparse event-
based SPAD activation data and in this way drastically reduce
the I/O requirements of the overall system.



AFSHAR et al.: EVENT-BASED PROCESSING OF SINGLE PHOTON AVALANCHE DIODE SENSORS 7679

This work is organized as follows: In the methods section,
a frame-based 24000 recording airplane classification dataset
which was generated using an existing 32 × 32 DTOF SPAD
sensor is presented. This SPAD imaging data is then used to
design a new event-based SPAD sensor and processor, with
128 × 128 SPAD detectors and 125 × 125 receptive fields.
The simulated output of this First-AND system was then used
to design an event-based back-end FPGA recognition system.
The proposed system is tested on a simulated event-based
dataset that is generated by passing the captured frame-based
dataset through a simulation of the event-based sensor and
processor. In addition to the First-AND system, several alter-
native event-based processing methods are also investigated.
In the results section, the SPAD timing data collected from the
existing sensor is presented to a simulation of the proposed
event-based processors. This simulated event-based output is
then further processed by the implemented event-based FPGA
processor. A range of system of parameters are investigated
and discussed.

II. METHODOLOGY

A. The SPAD Dataset
In this work, we tackle the challenge of performing clas-

sification of a large complex SPAD imaging dataset gen-
erated using frame-based and event-based approaches. The
task involves recognition of fast moving model airplanes. The
view-invariant classification of the fifteen classes of target
airplanes and one distractor represents a challenging problem
given the similarity of the classes, low spatial resolution,
presence of partial occlusions and the high noise level in the
dataset.

The 32×32 pixel SPAD camera used in this work was fab-
ricated on a standard CMOS chip with each pixel integrating
one SPAD and one time-to-digital converter as illustrated in
Figure 1(a) and described in [10]. The SPAD camera was fitted
with a Navitar NMW-12WA lens and a Thorlabs 660 nm filter.
The SPAD camera’s field of view was set to 26.22 degrees.
The laser used to obtain DTOF data was a 100 mW 660 nm
Coherent CUBE diode laser using a 12× zoom lens such that
the region of laser illumination and the SPAD camera field of
view were overlayed as shown in Figure 2(b).

The targets in the dataset are imaged using the SPAD sensor
in a photon timing mode where each SPAD pixel operates as
a LADAR sensor. The illuminating laser is pulsed at 100 kHz
providing photon time of flight information at an extremely
high frame rate. By dropping the model airplane at high
speed close to the sensor, the high temporal resolution of
the sensor can be leveraged and investigated. As shown in
Figure 2(b), the experiment involves the use of a larger more
distant background stationary B-747 model as a distractor.
This distractor becomes increasingly more prominent as the
number of frames collected for an image is increased. The
inclusion of the larger stationary distractor with the high-
speed target ensures that the dataset can only be processed at
high speed precluding the option of increasing SNR via frame
averaging. This set-up ensures a high noise imaging signal
that better represents real-world imaging environments. Unlike
controlled image collection environments typically used in

Fig. 2. SPAD sensor airplane drop classification experiment.
(a) Fifteen model airplane types make up the 15 classes in the detection
and classification task. (b) Experiment set-up. Metallic model airplanes
painted a uniform white were dropped in front of the SPAD sensor at close
range (approximately 30-40cm) resulting in high relative velocity. SPAD
field of view is marked by the black dotted line. In the background (approx-
imately 3 meters) a large model B-747 airplane serves as a distractor.
(c) SPAD image generated from averaging 500 raw frames representing
5 ms of recording time. The background B-747 model is clearly visible.
(d) SPAD image showing of the rapidly moving F-14 model generated
through averaging 5 raw frames representing 50 μs of recording time.

machine vision research, real-world imaging environments are
unpredictable, dynamic and noisy, precluding many commonly
used image enhancement methods such as frame averaging.
This experiment design aims to encourage the development of
algorithms that are robust to noise and can more readily be
applied to challenging real-world imaging environments.

The originally captured dataset involved 3000 individual
uncontrolled free hand drops of the 15 airplane classes with
200 drops per class. The dataset and associated supporting
files are available for download at [11]. This 3000 recording
dataset was augmented via mirror reflection as well as 90,
180 and 270 degree rotation resulting in an augmented dataset
of 24000 recordings. Sample recordings from the dataset are
shown in 3 illustrating the significant visual complexity due
to variance in target orientation, occlusions and the similarity
of the tested classes. This complexity is even greater when the
entire video of each recording is considered due to the change
in relative orientation of each target during each recording and
due to the occlusions present at the beginning and end of the
recordings as the targets enter and exit the field view.

B. First-AND Event Generation Method: Discarding
Time and Transmitting Change

In previously implemented SPAD DTOF systems and in our
proposed system, when a SPAD pixel is activated, it enables
a latch which stays high until it is reset. The reset is typically
performed after all data from the current laser pulse has
been transmitted off the sensor. This data and the associated
delay can be significant especially as the number of pixels
on the imager becomes very large. In the first proposed
system, which we call First-AND, instead of recording and
transmitting the time interval from the initial laser pulse, only
the inter-pixel photon arrival order (not the time) is detected.
In this way, the requirement for precise measurement and
transmission of the photon time of flight is removed along
with the resource consuming high-precision, on-chip, per-pixel
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Fig. 3. Sample recordings from the SPAD dataset. Each of the fifteen columns shows random samples of each airplane class in the dataset. The
images show the wide range of observed orientations, sizes and partial occlusions as the model airplanes pass through the field of view. The bottom
row shows a photo and label of each model. Note that the images show only the midpoint of the sample recordings.

counters and memory circuits. In the place of this circuitry,
each receptive field contains additional circuitry that performs
real-time feature extraction and event generation.

This simplification is achieved through the use of multiple
AND gates which take as input a local group of pixels. The
number of input pixels per AND gate must be equal so as to
provide an equal probability of gate activation. The pattern of
connectivity and its correlation to the observed spatio-temporal
order of SPAD activation also determines AND gate activation.
For example, an edge bar is more likely to be activated in
a natural environment than a checkerboard pattern since the
latter is not typically observed in the visual environment.
In this way, each AND gate encodes a local feature and
its activation indicates that all its input signals have been
activated. The choice to use digital AND gates, as opposed
to an analog summing and comparator circuits was made to
simplify the Integrated Circuit design of the system and to
ensure a deterministic output for each gate.

The AND gate pattern used in this work have overlapping
receptive fields and are tiled across the visual spatial field
to form a convolutional layer. Thus, the same pattern of AND
gate connectivity is repeated across the visual field. Each AND
gate can be interpreted as a neuron in a local single-layer
network of N0 (in this case N0 = 4) neurons connected to
a local r × r (in this case r = 4) receptive field. For each
receptive field as soon as all the input pixels of a single AND
gate latch high, i.e. as soon as the all SPADs feeding an AND
gate detect a photon, the AND gate goes high.

In the proposed design, the latching of the first AND
gate at each receptive field at each laser pulse, prevents
subsequent latching of any later neuron at that receptive field
via a recurrent enable connection that gates all AND gates.

This temporal inhibitory feedback structure was introduced in
the SKAN network [12] and demonstrated in FPGA hardware.

In this approach, each receptive field only requires memory
storage for a two bit address of the feature which was detected
most recently. Furthermore, the design can be modified to
only transmitting changes in feature detection at each receptive
field, rather than reporting the winning feature each laser pulse.
Given an ideal, noise free sensor, this modified method would
greatly reduce the output data rate of the event-based sensor.
Unfortunately, in practice the sensor noise can generate a
significant amount of random feature changes resulting in a
large number of noise events.

Based on the data recorded during our experiment, a range
of sensor non-idealities and noise sources were found. These
non-idealities could be broadly divided into false-positive
and false-negative latching events, imprecise timing in the
latching of the SPAD pixels (jitter) and persistent non-ideal
timing patterns across the array pixels. These noise sources
are detailed in the Supplementary Material.

Through consideration of the likely sources of noise,
the event generation method of the First-AND system based on
local changes in features is modified to introduce robustness
to noise whereby a feature detection success counter is added
such that every time a detected feature in a receptive field is
the same as the one already in memory for that receptive field,
the detection counter increments by one. Every time the newly
detected feature is different from the one already in memory,
the counter is decremented by one. If the feature detection
counter of a receptive field reaches a pre-set threshold value
(� = 6), the receptive field creates a feature event and the
counter is set to zero. Conversely, if the counter reaches zero
after a decrement, the newly detected feature which caused
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Fig. 4. Functional block diagram of a single receptive field of the ASIC implemented First-AND Network.

the decrement replaces the old feature that was in memory.
In this way, a constantly noiselessly detected feature will
periodically send out a confirmatory feature event, whereas
receptive fields where no feature consistently wins will not
output any features. By decreasing the global threshold, we can
decrease the number of times a feature must be detected before
it triggers a feature event. This reduction in threshold increases
the data-rate and allows features whose verity is less certain
to be transmitted. Conversely, a higher threshold increases the
certainty about the transmitted features and reduces the data-
rate. In this way a global feedback control to the system can be
implemented. While this aspect of the design was not explored
it forms an avenue of investigation in future work.

C. Implementation of the First-AND Network in ASIC
The First-AND system described in Section II-B was

implemented as part of a Complementary Metal-Oxide-
Semiconductor (CMOS) based SPAD cells with supporting
mixed-signal and digital Integrated Circuit (IC) chip design
using a Silterra High Voltage CL130H32 Process Technology.
The chip operates in time of flight mode, in this configuration
the start of a new acquisition cycle is synchronized to a
laser pulse being fired at the target (i.e. Flash LADAR). The
implemented 128×128 SPAD array contained 125×125, 4×4
receptive fields each with 4 silicon digital AND based feature
detectors consisting of North, South, East and West. The pitch
between SPAD detectors is 75 μm with a .3 percent fill factor
in each receptive field.

The system features priority encoding, a 3-bit feature
counter and an adjustable threshold for the detection of win-
ning features. The network readout is implemented via the
AER protocol allowing an asynchronous DTOF SPAD sensor
array with real-time event-based feature extraction for 3D
imaging applications. The inclusion of the 3-bit feature success
counter and a globally adjustable feature count threshold
provides robustness to noise while minimizing the readout of
noise from the sensor.

Figure 4 shows a functional representation of each receptive
field circuit or cell. The 16 SPADs connections are not shown.
When the SPADs avalanche, or fire, they are synchronously
latched to an on-chip CLOCK (configured via PLL or fed

via external CLOCK signal). The value of the threshold �,
is set by the input S0/S1 lines shown in Figure 4. The event
is indicated by the CA_Busy_n output line on the chip. When
an event is generated, the encoded row and column address
of the location of this receptive field is sent off-chip as
well as the class of winning feature North, South, East or
West. When the user has read the address/data information,
an acknowledgement is sent to the ext-ack input line which
resets the counter and releases the CA_Busy_n line. The event
generator in a particular receptive field is reset once it receives
row and column acknowledge signals as well as a global
acknowledge signal which is generated off-chip. Although
the acquisition cycle is synchronized to CLOCK, events are
asynchronously generated off the chip. The on-chip arbiter
processes the order of events as they occur, and events can
be generated asynchronously, as such it is possible that not
all events will be captured and read by the monitoring FPGA
between laser pulses resulting in dropped events.

Figures 5 and 6 show the layout of a single SPAD pixel and
a 4× 4 pixel receptive field respectively.

D. Training Binary Feature Extractor Networks
In order to extract higher level spatio-temporal patterns

generated by the proposed First-AND system, an event-based
feature extraction network was trained on an event-based
dataset that was generated using a simulation of the First-AND
system operating on the timing data captured using the existing
32 × 32 pixel camera. The Feature Extraction using Adaptive
Selection Thresholds (FEAST) method used was detailed
in [13]. This simple event-based unsupervised learning algo-
rithm uses competition between adaptive neurons to generate
balanced network activation in response to incoming data.

The FEAST algorithm operates via three simple rules:
When the network receives the i th input event ei , the neuron
with weight w1(n) whose cosine distance to the Region of
Interest R O I i is smallest, wins the event. This is as long the
cosine distance is smaller than the current selection threshold
distance. The winning neuron adapts its weights slightly
toward the pattern of the R O I i . Upon winning, the selec-
tion threshold of the neuron contracts making the winning
neuron more selective around its target spatio-temporal pattern.
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Fig. 5. Single Receptive Field Cell showing a SPAD sensor and
Circuitry Blocks, size 75 μm × 75 μm. Here the neuron pass bank
determines whether the current detected feature is the same as the
previous detection.

Fig. 6. Each receptive field is comprised of (connected to) 16 (4 × 4)
neighboring SPAD detectors 30μm in diameter (5μm active area).

A second mechanism operates to balance this drive toward
greater selectivity whereby every time the entire network of
neurons fails to generate an output event in response to an
input event, the selection thresholds of all neurons widen
making all neurons more receptive. This balancing of the net-
work’s selection thresholds and the gradual adaptation of the

weights of the network to the observed local spatio-temporal
patterns, results in a trained network where all neurons fire
at approximately equal rates over the entire training dataset.
By balancing network activation the FEAST algorithm ensures
that the neurons in the feature extractor network represent the
most commonly observed spatio-temporal patterns resulting in
a feature set that best represents the underlying training data.
Figure 8 shows an example of the FEAST algorithm training a
16 neuron network on the four-polarity First-AND event-based
airplane dataset.

When implementing the FEAST algorithm, the best fitting
neuron to an incoming ROI pattern must be determined.
This can be achieved most directly via dot product opera-
tion which requires D1 × D1 × N1 multiplication operations
followed by N1 summation operations. However to reduce
the hardware resource requirements for this neuron matching
operation and to remove the need for hardware implemented
multipliers, the continuous-valued feature weights w1 shown
in 8 are converted to binary-valued features. Methods for
binarizing images include the Otsus method [14], Kittler and
Illingworth’s minimum error thresholding method [15] and
the Adaptive Binarization method [16]. Here the we use a
much simpler equal activation method where for each neuron,
the number of 1 valued pixels m is equal. During training,
at each presentation, the largest m weights on each neuron
are set to one. This method of equal neuron activation allows
the unbiased use of AND gates instead of multipliers. When
using AND gates as multipliers, if the number of active pixels
per feature is not equal, neurons with a lower number of
on pixels would activate on more patterns than those with
a larger number of on pixels regardless of fitness to the input
pattern.

Algorithm 1 Event-based Surface Generation

Require: ei = [xi , yi , pi , ti ]T , i ∈ N

Ensure: S0
i , i ∈ N

S0
i ⇐ 0, T 0

i ⇐ 0
for each event f i do

T 0
i (xi , yi , pi ) ⇐ ti

if mod(i, I )=0 then
S0

i ⇐ (t − T 0
i < τ0)

end if
end for

After training, the finalized binary features can be used
for inference on the input event stream as an event-based
convolutional layer. This results in a first layer feature map
S1

i which can be sampled and processed by a classifier in an
event-based manner. In this work, in order to isolate the gains
provided by the event-based convolution layer, the input events
stream is also converted to an input event surface S0

i to be
sampled and processed by the classifier in an identical manner
to the feature map. The generation of the input surface S0

i
and feature layer surface S1

i are detailed in Algorithm 1 and 2
respectively. The block diagram of the end to end system is
shown in Figure 7.
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Algorithm 2 Event-based Feature Convolution

Require: ei = [xi , yi , pi , ti ]T , i ∈ N

Ensure: S1
i , i ∈ N

S1
i ⇐ 0, T 0

i ⇐ 0, T 1
i ⇐ 0, R O I i ⇐ 0

for each event f i do
T0

i (xi , yi , pi ) ⇐ ti
R O I i (x, y) ⇐ (t − T0

i (x + xi , y + yi , 1) < τ0),
where x = [−r1..r1] and y = [−r1..r1]

for each neuron n ∈ 1..N1 do
d(n) ⇐ ∑

x,y R O I i (x, y) ∧ ẅ1(x, y, n)
end for
qi ⇐ argmaxnd(n)
T1

i (xi , yi , qi ) ⇐ ti
if mod(i, I )=0 then

S1
i ⇐ (t − T 1

i < τ1)
end if

end for

Fig. 7. Block diagram of the end-to-end First-AND event-based process-
ing system. (a) Shows the raw image generated by the SPAD sensor
in time of flight mode as a B-2 model enters the field of view. The
red box indicates the receptive field of the current generated event.
(b) Shows the four First-AND features and their binary bar shaped
weights. Superimposed are the state of the latched SPAD pixels at the
moment the First-AND feature generates an event (diagonal black lines).
The third feature is the first AND gate to latch disabling the others and
passing its event to the next layer. (c) Shows S0

i , the binary-valued four-
polarity time surface with activation over τ0 = 2 ms. This surface serves
as a feature map for the next layer of processing. (d) Shows the 5 × 5
Region of Interest ROI extracted from S0

i . (e) Shows the 16 four-polarity
binary event-based features which operates on S0

i . (f) Shows the color
coding of the 16 features. (g) Shows the 16 polarity binary-valued time
surface S1

i . Panels (h) and (i) show the pooling and classification layers
respectively.

E. Alternative Event-Based Methods: On-Off Bi-Polar
and Uni-Polar Events

In this section, we introduce two alternative method for
comparison to the proposed and implemented First-AND
method. In the first method, the difference between consec-
utive SPAD frames is converted into a sparse On-Off event

Fig. 8. Generating 16 binary-valued features on a four-polarity event-
based dataset. (a) Shows the initial random weights of the sixteen four-
polarity 5×5 features w1. (b) The binary weighted feature set ẅ 1 with the
number of on pixels per feature m = 32. (c) Final state of the continuous
features w 1 after training. (d) Final binarized feature set ẅ 1.

Algorithm 3 On-Off Event Generation
Require: Zk, k ∈ N

Ensure: f i = [xi , yi , pi , ti ]T , j ∈ N

�k ⇐ 0
�Zk ⇐ 0
for each frame k > 1 do

�Zk ⇐ Zk − Zk−1
�k ⇐ �k−1 + �Zk

for each pixel at (x,y) do
if |�k(x, y)| > θ then

i ⇐ i + 1
p j ⇐ sgn(�k(x, y)) , (ON-OFF Events)
f i ⇐ [xi , yi , pi , ti ]T

�k(x, y) ⇐ 0
end if

end for
end for

stream using a simple thresholding operation analogous to
those used in other event-based sensors. In the second method,
we then augment these On-Off events by introducing uni-polar
and bi-polar events. Event-based sensors in general, operate
by converting an analog signal (typically pixel illumination in
vision) to a sequence of events via a thresholding operation.
For the DTOF SPAD imager, this analog signal is the photon
time of flight information Zk which encodes detected depth
at the kth laser pulse. Algorithm 3 details the generation of
On-Off events from the photon time of flight data.
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This approach to event generation is more straightforward
than the First-AND approach and has the advantage of provid-
ing single pixel resolution which is missing in the receptive
field based First-AND method. The trade-off, however, is the
need for measurement and storage of high-resolution timing
data Zk at each pixel that the First-And approach avoided and
which increases the per pixel hardware resource cost.

Having generated the On-Off events used in standard event-
based sensors, we now augment these with two additional
event polarities. These two event polarities encode shape
invariant local change information via a novel approach. The
two event polarities which we name uni-polar and bi-polar
events are used to generating a combined On-Off-Bi-polar and
Uni-polar (OOBU) event stream.

Algorithm 4 OOBU Event Generation

Require: f i = [xi , yi , pi , ti ]T , i ∈ N

Ensure: g j = [x j , y j , p j , t j ]T , j ∈ N

Si = 0
for each event f i do

T i (xi , yi , pi ) = ti
σ+ ⇐ ∑

x,y (t − T i (x, y, 1) < τ),

σ− ⇐ ∑
x,y (t − T i (x, y,−1) < τ),

where x ∈ {xi − 1, x, xi + 1} and y ∈ {yi − 1, y, yi + 1}
if

(
(σ+ > φ1) ∧ (σ− = 0)

) ∨ (
(σ− > φ1) ∧ (σ+ = 0)

)

then
j ⇐ j + 1
p j ⇐ 2 , (Uni-polar Event)
g j ⇐ [x j , y j , p j , ti ]T

else if (σ+ > φ2) ∧ (σ− > φ2) then
j ⇐ j + 1
p j ⇐ 3 , (Bi-polar Event)
g j ⇐ [x j , y j , p j , ti ]T

end if
end for

The bi-polar and uni-polar events are generated using a
simple recent event counting operation over the surrounding
3 × 3 pixel region around the current event. As described in
Algorithm 4, if the recent events in the 9 pixel region are
all On or all Off and their number exceeds a threshold φ1,
then a uni-polar event is generated. If however, both On and
Off polarities are present, then if both the On and Off counts
are above a threshold φ2 then a bi-polar event is generated.
In this work the values φ1 = 2 and φ2 = 1 were selected
through observation of the data.

Since only the local event count is considered, the orienta-
tion or structure of recent events does not matter. This results
in a unique local feature that is invariant to feature shape,
allowing a wide range of different shapes to generate the
same event types while still capturing critical local activation
information.

An example of the On-Off and the uni-polar and bi-
polar event streams are shown in Figure 9 demonstrating that
On-Off event streams faithfully capture the salient spatio-
temporal features of the target while the uni-polar and bi-polar

Fig. 9. Generating ON-OFF-Bi-polar and uni-polar events from SPAD
sensor data. Panels (a) and (b) show the previous and current captured
frames from the SPAD sensor respectively. (c) Shows the frame differ-
ence between the current and previous frames. (d) Shows the ON and OFF
events produced via thresholding of the events at θ = ±2. (e) Shows the
uni-polar (white) and bi-polar (black) events generated via Algorithm 4.

Fig. 10. Separability of an example three class problem using only event
polarity counts. (a) Plots the ratio of OFF event vs ON events for each
recording for three example airplane classes. The classes are separated
using a combination of two thresholds resulting in 44.13% accuracy. (b)
The same test is performed using bi-polar and uni-polar event ratios.
Again two thresholds are used to separate the three classes this time
resulting in 92.83% accuracy.

events combine local features in a manner that provides
distinct, higher scale information to a down-stream processor.

To illustrate the power of uni-polar and bi-polar events in
capturing high level salient feature information, a simple three
class classification problem is shown in Figure 10. Here two
linear thresholds are combined to separate the three classes
using only the event polarity count information. Figure 10(a)
shows that simple examination of the On and Off event
counts is not a useful method of discriminating the three
example classes. For this example the best accuracy achievable
using two separating On-Off event count ratio thresholds is
44.13% accuracy which is only slightly above chance 33.33%.
In contrast, as shown in Figure 10(b), when bi-polar and uni-
polar events are generated from the On-Off event stream,
a simple bi-polar uni-polar event count test results in 92.83%
accuracy when two event count ratio thresholds are used
in combination. While this extremely simple event counting
method does not extend to more challenging tasks (such as
the full 15 class SPAD dataset) this simple example illustrates
the significant discriminatory power of OOBU events. In this
work, we show that when OOBU events streams are processed
in a more sophisticated manner, they outperform other types
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Fig. 11. Trained OOBU neuron weights across network sizes.
(a) Shows a trivial single neuron network. The four images represent
the ON (p0 = 0), OFF (p0 = 1), bi-polar (p0 = 2) and uni-polar (p0 = 3)
feature weights of the single neuron (p1 = 1). This single neuron network
simply serves to show the dominant spatio-temporal pattern present in
the dataset which is only OFF events (p0 = 1) occurring together (p0 = 3).
(b) A two neuron network (p2 = 0,1) shows the next most dominant
observed pattern is the On events (p0 = 1) occurring together (p0 = 3).
Note that the first neuron in this network is nearly identical to that in (a).
(c) The third most dominant pattern is the ON and OFF events occurring
together in a diagonal pattern. (d) The fourth most dominant pattern is
a second variant of the OFF event occurring alone on the right-hand side
of the ROI. Note that the presence of this variant results in the first neuron
being trained in a complementary manner with the OFF events occurring
on the left-hand side of ROI such that the summation of neuron 1 and
4 would approximately equal the single dominant neuron in (a). Panels
(e) and (f) show networks of 9 and 16 neurons with increasingly complex
features.

of event streams and produce the highest performing results
of the dataset.

We now combine the OOBU events generated from the
frame-based SPAD dataset into a single event stream and
process it through the same surface generation and fea-
ture extraction algorithm described in Algorithm 1 and
Algorithm 2 using identical training architecture and learn-
ing parameters. In doing so we are able to combine the
information from the On-Off, uni-polar and bi-polar event
streams into a single feature extractor network. Figure 11
shows the spatio-temporal patterns extracted at each network
size from the SPAD OOBU event-based data stream. Figure 11
demonstrates how the FEAST algorithm extracts the dominant
patterns in the dataset for any given network size and how the
information contained in the On, Off uni-polar and bi-polar
event streams can be combined to provide powerful discrimi-
natory features.

F. Pooling, Surface Sampling and Classification
After the feature extraction operation performed by FEAST

is complete, the target region of size Ax × Ay on the time
surface is selected via a surface summation and thresholding
operation described in [17] and implemented for real-time
GPU based platforms in [18].

After the Ax × Ay target region is selected, the variable
sized 2D area from the surface must be mapped to the

statically sized classifier input layer. To perform this mapping
we explore two alternative methods. In the first method, which
we call 1D pooling, the Ax × Ay region is summed across
rows and columns resulting in two one-dimensional vectors
V x of size Ax × 1 and V y of size Ay × 1. These two
vectors are then re-sampled to two L × 1 vectors. To speed
up and simplify these re-sampling operations, the input data
was first cropped or zero buffered and resampled using a
zero-order-hold operation which was implemented via a pre-
calculated Look Up Table. This hardware optimized method
was introduced in [18]. In the second method, which we
call 2D pooling, the Ax × Ay target region is re-sized to a
two-dimensional image of size L × L. For this method a 2D
resample function using linear interpolation between adjacent
values was used.

The 1D pooling method significantly simplifies the imple-
mentation of the resampling and also provides the added
benefit of a classifier with a smaller input layer. However the
2D pooling method captures significantly more information
and as we show in this work, results in higher recognition
performance in most cases, creating design trade-offs that
require investigation. In a similar way, the size of the classifier
input layer which is m = L × 2 in 1D case, and m = L × L
in the 2D case, can also affect the accuracy. For this reason
in this work we perform all trials over a range of pool
sizes (L ∈ {1, 2, 3, 4, 6, 8, 12, 16, 24}) to investigate these
effects and provide useful design guidelines for hardware
implementation.

Another important hyper-parameter in the operation of the
feature extraction and classification system is the frequency of
surface or image sampling for the processing by the classifier.

For the frame-based data, the time interval between classifi-
cation operations was selected as 80 microseconds or every 8th
laser pulse. This time interval resulted in a total of 1.22 million
classification operations over the entire dataset or approxi-
mately 50.51+/−8.07 classification operations per recording.
This total number of operations was then used to normalize
the number of classification operations on the event-based
dataset to provide an approximately equal number of input
samples to the classifier enabling an unbiased comparison of
the frame-based and event-based systems. For the First-AND
event streams, keeping the total number of classification oper-
ations constant results in an inter classification event interval
of 51 events. For the On-Off and OOBU events, the interval
between classification operations becomes 74 and 201 events
respectively. By operating the classifier in this event-based
manner, the rate of processing becomes dependent on the level
of salient change in the field of view as opposed to constant
in the frame-based approach.

All classification tests in this work were performed on
the full 15 airplane, 24000 recording augmented dataset. The
dataset was split randomly into a 21600 recording (90%)
training set and 2400 (10%) test set. All tests were repeated
over n = 20 trials using randomized splits of the dataset
recordings. The original frame-based dataset was converted to
the equivalent event-based datasets via the methods described
in Section II. All tests were performed using a simple linear
classifier to probe the performance of each configuration in an
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unbiased manner and without the introduction of additional
computational complexity. The input to the linear classifier
consists of a resized target region from a sampled time surface
(S0

i or S1
i ) which is vectorized into a 1 × m input vector u.

where, m = L2 for the 2D pooling case and m = 2L for the
1D pooling case. The output of the linear classifier is a 1 × n
predicted output vector v̂ with n being the number of output
classes which in this case is 15. The predicted output vector
v̂ is calculated via:

v = Wû (1)

where W is the trained m × n weight matrix.
To determine the winning output class j during inference,

an argmax operation is performed on the predicted output
vector vi :

j = argmaxi∈[1..n](v̂i ) (2)

For the process of training and testing, all sampled input
vectors u are concatenated to form the o × m input matrix
U where o is the number of samples over the entire dataset.
A corresponding o × n ground truth output matrix V is also
generated using a ‘one-hot coding’ scheme with the actual
class for each sample set to 1 and all others set to zero.

The input matrix is then split into the 21600 recording
training input matrix, Ua and 2400 recording testing input
matrix Ub. The corresponding output matrix V is similarly
split into V a and V b. The classifier is trained via a calculation
of the pseudoinverse solution to the weights mapping the
input activation layer or feature layer to the output classes
as given by:

W = (UT
a V a)

T (UT
a Ua + λI) (3)

where I is the identity matrix and λ = 0.1 is the regularization
factor used for applying ridge regression [19]. In cases where
the pseudoinverse operation could not be performed in a single
pass (due to memory constraints) the equivalent online method
was used [20]. In either approach, the training operation is
deterministic and repeatable such that the source of variance
in classification accuracy is exclusively due to the feature
extraction operation and the random splitting of the dataset.

G. Event-Based Processor Implementation on FPGA
The event-based binary feature convolution and classifier

system was implemented in FPGA hardware on a Cyclone IV
E platform. By implementing the system on a relatively small
FPGA platform, we demonstrate the utility of the proposed
system in applications where hardware resources are lim-
ited. In the FPGA system 16 neurons of size 5 × 5 with
4 input polarities are implemented. In addition, an event-
based linear classifier processes the output of the features.
A detailed description of the FPGA system is described in
the Supplementary Material Section.

H. Comparison to Frame-Based System
To provide a comparison for the performance of the event-

based feature extraction networks, equivalent frame-based sys-
tems with identical architectures and training methodologies

Fig. 12. Reduction in data size by event-based conversion.
(a) shows the distribution of size of the frame-based SPAD recordings.
Panels (b), (c) and (d) show the size distributions of the First-AND, ON-OFF
and OOBU event streams respectively.

were developed and tested. Here the event-based feature
extractors are replaced with convolution and max pooling
operations with the same feature sizes. In this way the frame-
based networks precisely replicate the event-based operations
with the only difference between the two methods being the
extra, arguably unnecessary, convolution operations performed
in the frame-based system on the parts of the image exhibiting
no significant change i.e. those with no events. Following
the convolutional layer, the same pooling methods and linear
classification operations were performed for all tests providing
an unbiased comparison between the frame-based and event-
based systems.

A subset of these frame-based feature extraction net-
works were implemented on an embedded NVIDIA Jetson
TX2 board [18]. This hardware implementation aimed to
demonstrate the feasibility of realizing a high-speed hard-
ware effiecent feature extraction and classification system for
noisy low-resolution SPAD imagers. To further simplify the
implementation the simpler 1D pooling method was used in
this work. In the next section we compare the classification
performance results of a range of frame-based systems to
equivalent event-based systems.

III. RESULTS

A. Data Generation Rates
The recorded frame-based SPAD imaging dataset was con-

verted to a First-AND event-based data stream via simu-
lation of the implemented First-AND circuit described in
Section II-C. In addition, the dataset was processed using
Algorithms 1 and 2 to generate the On-Off and OOBU event-
based data streams. As shown in Figure 12, the conversion
of frame-based SPAD data to an event stream significantly
reduces the recording size and thus the data-rate of the
processor with associated savings in processing power and
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Fig. 13. Classification accuracy on the frame-based SPAD airplane
dataset across a range of parameters. Panels (a) and (b) show per
frame and per recording accuracy respectively where classification is
performed directly on the raw SPAD images via a linear classifier. The
top and bottom two panels show the mean and standard deviation of
classification accuracy respectively. Results for both two-dimensional
pooling and one-dimensional pooling are plotted as a function of pool
size and compared to chance 1/15 = 6.7%. The vertical dashed line
at L = 12 indicates the pooling window size chosen in the subsequent
tests. Panels (c) and (d) show per frame and per recording accuracy
respectively after feature extraction as a function of the number of feature
extracting neurons. The dashed vertical line at N = 16 marks the network
size chosen for FPGA implementation. All results presented are over n
= 20 independent trials.

improved response time. The First-AND conversion method
results in an 81 fold reduction in data-rate whereas the On-
Off and OOBU methods result in 57 and 25 fold reductions
respectively. Having examined the data-rates generated from
the different methods, we now compare the classification
performance of the First-AND, On-Off and OOBU event
streams to the original frame-based SPAD imaging dataset.

B. Classification
The tests presented in this section cover the raw frame-

based dataset as well as the event-based methods described.
We further test the effect of different pooling methods as
well as processing by random and trained feature extraction
networks. The tests also examine in detail the effect of pooling
window sizes and network sizes on performance. All test
were performed using a linear classifier mapping frames-based
images and event-based samples of time surfaces to the output
classes in a repeatable manner. Where applicable, fixed-point
precision was used for simulation parameters mirroring the
fixed-point FPGA implementation described in Section II-G
and the ASIC implementation in Section II-C.

Figure 13 shows the classification results when using frame-
based processing on the SPAD dataset. The results are orga-
nized in per frame and per recording accuracy results. For
the per recording accuracy measure, the class with the highest
number of winning frames is selected as the correct class.
Unsurprisingly, since this process effectively performs a pool-
ing and max operation over the information in all the frames
of a recording, the per recording classification accuracy is
consistently above that of the per frame accuracy measure.

It is clear from the accuracy results in Figure 13 that the
2D pooling almost always outperforms 1D pooling. However
the 1D pooling method is significantly simpler to implement
in hardware and faster to compute in software motivating
its investigation and comparison to the 2D pooling method.
Given hardware constraints, these comparisons provide valu-
able information on the resource versus performance trade-offs
which are critical during the hardware design stage.

The first point in Figure 13(a) at L = 1, collapses all
information in each frame to a single number. As expected,
this global pooling of the entire raw image produces an
identical accuracy for both the 1D and 2D pooling methods
that is close to chance. This result effectively demonstrates
that, as expected, the mean value across the pixels of the
image provides approximately zero information about the
target class. As the size of the pooling window L increases,
the classification accuracy rises sharply before stabilizing
above L = 12 pixels since little additional information can be
generated by increasing the pooling window resolution to or
above the original Ax × Ay . Thus the best results achievable
using the raw frame-based SPAD data, a pooling layer and
a linear classifier is accuracy that is below 25%. The per
recording accuracy measure shown in 13(b) is similarly poor
providing only slightly higher accuracy at the larger pool sizes.

Figure 13(c) and (d) show the classification accuracy of
trained frame-based feature extraction networks with iden-
tical architecture and training parameters as the event-
based networks discussed in Section II-D. The first point
in Figure 13(c), at N = 1, L = 12 and accuracy of
approximately 30%, represents a trivial convolution of the
SPAD frames by the single commonest feature in the dataset.
Capturing slightly more spatial information than the raw
image, this trivial solution performs only slightly better than
the raw frame results of (a) with pool size L = 12. Here,
the additional information derived from the incorporation of
local spatial information in the convolution operation pro-
vides approximately 10% improvement in accuracy. As the
number of feature extractors is increased, the classification
accuracy increases to slightly above 60% and below 80%
for the per frame and per recording measures respectively at
N = 36 neurons. While every increase in network size
improves system accuracy, there are diminishing returns with
each layer size increase, a pattern that we see consistently in
all tests. Note that the comparison of the 1D pooling and 2D
pooling methods shown in Figure 13(c) and (d) demonstrate
only a slight advantage in favor of the 2D pooling method
thus validating the hardware design choice of implementing
the simpler 1D pooling method in [18].

Figure 14 shows the classification performance of the pro-
posed event generation methods. The classification results
show a large increase in accuracy for all event-based methods
relative to the original frame-based SPAD dataset shown in
Figure 13(a). The event stream with the lowest accuracy is
that of the On-Off events shown in Figure 14(a). The first
point plotted is at pool size L = 1 which shows per accuracy
slightly above 10%. This is equivalent to only using the event
polarity count for classification which unsurprisingly results
in the lowest accuracy. As the pool size is increased above
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Fig. 14. Classification accuracy on event-based data streams generated
from the SPAD the dataset. Panels (a) and (b) show the per frame and
per recording accuracy results of the ON-OFF event streams. Panel (c)
and (d) show the same for First-And events, (e) and (f) for OOBU events
and (g) and (h) show the same for feature events generated from OOBU
events using 16 FEAST neurons. All results are shown as a function of
the pool window size L. The vertical dashed line indicates the chosen
window size L = 12 used in subsequent tests.

L > 8 the per frame accuracy rises reaching approximately
55% and 65% for the 1D and 2D pooling methods respectively.
The results in (b) follow a similar pattern with per recording
accuracies reaching 62% and 76% respectively for the 1D and
2D pooling methods. The First-AND event results are shown in
panels (c) and (d). Here the 2D pooling accuracies are slightly
above those of On-Off events. The relative improvement in
accuracy is even greater for the 1D pooling method again
motivating its use in hardware. The OOBU event accuracy
results shown in (e) and (f) are consistently higher than those
of both the On-Off and First-AND events making OOBU
events the clear winner of the three approaches.

Finally panels (g) and (h) of Figure 14 show the accuracy
achieved via the addition of an event-based feature extraction
layer. This configuration is used in the hardware implemented
system described in II-G with OOBU events serving as inputs
to 16 trained features. The performance of the full system
is examined as a function of different pooling methods and

pool sizes. The per frame and per recording accuracies of the
feature extraction layer are the best of all the event streams
tested, starting from slightly above 40% accuracy and reaching
75% and 87% per frame accuracy for the 1D and 2D pooling
methods respectively. The per recording accuracies are even
higher at 79% and 90% for the 1D and 2D pooling methods
respectively. Here the L = 1 result at above 40% accuracy
and the L = 12 result at 90% accuracy are both remarkable
given the complexity of the 15 class view-invariant airplane
classification dataset, the simplicity of the applied methods
and the significantly lower performance on the frame-based
dataset using identically structured and trained classification
architectures. These accuracy results together with the clear
data-rate advantages detailed in Section III-A, highlight the
suitability of the use of event-based compressive sensing
approach to the high noise SPAD time of flight imaging data.

Having investigated the effects of different pooling methods
on the various event-based data streams, we now investigate
the effect of the feature extractor network size on classifi-
cation accuracy. Since the size of the feature extractor net-
work affects hardware resource consumption and/or processing
speed, we seek to determine the smallest network which
provides an acceptable level of performance given the resource
constraints and speed requirements. Figure 15 shows accuracy
results for the First-AND and OOBU event streams which pro-
vided the highest performance in the pooling test experiments.
Figure 15(a) and (b) shows the per frame and per recording
accuracies of the First-AND event stream processed by random
binary-valued feature extraction networks. By using random
features with identical network architectures and processing
methods, the improvements gained via feature training alone
can be isolated. The first points on panels (a) and (b) represent
trivial single neuron feature extractors. As the layer size
increases the mean classification accuracy increases rapidly
reaching slightly above 70% at the highest network size tested
which is N = 36. These random feature results provide a
baseline for evaluating the trained binary networks whose
results are shown in panels (c) and (d). The results show that
trained features consistently outperform random features. Here
as in the raw event stream tests, 2D pooling still consistently
outperforms 1D pooling, here however, the margin is smaller.
This result is expected since the feature extraction operation
projects the raw event stream onto a large number of sparsely
populated feature surfaces such that when the surfaces are
pooled via the 1D method, less information is lost in compar-
ison to the 2D pooling method. In other words, as the size of
the feature extraction layer expands, the effect of information
loss due to 1D pooling becomes less significant.

In panels (e) to (h) the same comparison between random
features and trained features is performed, this time on the
OOBU events. We again see that as with the First-AND
case, trained OOBU features outperform random ones. And
again we see that OOBU events consistently outperform First-
AND events, this time when processed through an event-based
feature extraction network. The results in panel (g) and (h)
represent the highest accuracy achieved on the dataset where at
a layer size of N = 36, a per frame accuracy of 82.64% and a
per recording accuracy 91.5% is achieved. This network layer
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Fig. 15. Classification accuracy using feature event streams gen-
erated from random binary networks and trained binary networks
operating on the proposed First-AND and OOBU event streams (a)
and (b) show per frame and per recording classification accuracy
using First-AND events processed through a random binary feature
extraction layer of varying size and (c) and (d) show the same
with the random binary features replaced by trained binary features.
(e) and (f) show per frame and per recording accuracy results of random
binary features operating on OOBU events and (g) and (h) show the
same for trained binary features. The dasehd vertical line shows the
N = 16 configuration selected for implementation of the event-based
FPGA processor described in Section II-G.

size was chosen to provide a reasonable trade-off between
accuracy and hardware resource requirements.

C. FPGA Implementation Results
With the accuracy results provided in the preceding section,

we now look at the FPGA implementation results for an
instance of the event-based processor whose classification
accuracy results were detailed in Figure 15(c) and (d) for
the First-AND event streams and (g) and (h) for the OOBU
event streams. Since identical fixed-point implementations
were used in both the software and FPGA implementations,
the classification accuracy results from the preceding sections
apply directly to the end-to-end FPGA implemented system
which here is referred to as the NEURO_NET. The resource
utilization of the FPGA was below 30%.

TABLE I
NEURO_NET HARDWARE RESOURCE COSTS

As can be observed from Table I, a substantial amount of
the AER_REPLAY and NEURO_NET nodes each consume a
significant amount of memory. Ultimately the AER_REPLAY
node would be removed when the SPAD imager is interfacing
the event-based processor directly. The memory consumed by
the NEURO_NET node is primarily due to the FIFO that is
used for logging purposes. The logging node provides a means
of both testing/debugging the neural network design but more
importantly allows retrieval of the classification data from the
FPGA and into the software. Excluding these hardware costs,
the 128 × 128 pixel system requires 125 × 125 × 4 = 62, 500
addresses with 32 bit DWORD registers which results in a
requirement of 250 Kbytes of RAM.

Besides the memory resources consumed, the NEURO_NET
also consumes 128 DSP elements. These DSP elements exist
in the NEURO_CLASSIFICATION node where the vector dot
product operation on the output feature map or histogram and
the classifier weights occur. Currently, the classifier weights
are restricted to a 12-bit signed notation, hence each neuron
consumes two embedded 9-bit multipliers (multiplication is
pipelined over two clock cycles), for a total of 16 neurons
32 multiplications and with four event polarities the results in
a total of 128 multipliers. The results from Table I, the relative
small size of the FPGA platform and the complexity of the
task performed by the system demonstrate that the hardware
implemented system represents an efficient hardware realiza-
tion of event-based SPAD processing.

Table II lists the execution times for the Neuro Net states,
and the timing information has been generated from various
Signal tap captures. The total time to process a single AER
event and update the feature map or histogram is 29.24μs.
The vast majority of this time is consumed in the‘UPDATE_
PATCH_MATRICES’ state where the ROI from the time
surface (or patch data) is read from the DDR2 SDRAM. In this
state a total of 100 memory addresses are read, with a patch
size of 5, and with four RFs giving 5×5×4 = 100. On average
to synchronize and read a single address of the DDR2 SDRAM
from the 100 MHz FPGA clock domain, takes approximately
290 ns, 29 clock cycles. Any future implementations of this
event-based processor must take into account this bottle neck.
Solutions to this bottleneck include refinement of the logic,
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TABLE II
NEURO_NET STATES EXECUTION TIME

faster RAM and finally the development of a cache system
outlined in the discussion section.

IV. DISCUSSION AND FUTURE WORK

A potential weakness in the First-AND event generation
method is the all or none behavior of the AND gates whereby
even a single faulty, inactive pixel can disable the entire
receptive field. While such‘dead pixels’ were not observed in
the recorded dataset, their potential presence in imagers with
higher numbers of pixels is more likely. To protect against
the effect of such non-idealities, the replacement of the AND
gates with thresholded current summers will be investigated
in future designs of the First-AND system.

In order to reduce the potential effect of inherent internal
delays in the SPAD array, the global clock may be slowed
such that the SPAD pixels are effectively sampled at a lower
temporal resolution. In this way, small errors in timing mea-
surement (but also timing measurements of nearby objects) are
effectively quantized at the same low-resolution clock cycle.
The utility or otherwise of this approach will be investigated
in future work.

Given the simple method of their generation and orientation
and shape invariant informational properties, OOBU events
provide a promising approach to increasing event information
in a wide range of event-based sensor systems. The feasibility
of implementing these higher level features in local sensor
networks will be investigated in future work.

Given the complexity of the noise sources and their depen-
dence on recording conditions, in this work, we limit our
investigation to a single recording setup representing a single
point in the complex noise space. In future work we aim to
investigate the effect of recording conditions on the perfor-
mance of the proposed system.

As detailed in III-C a major bottleneck operation of the
event-based FPGA processor is the loading of a local ROI from
the time surface surrounding a current event. Furthermore,
this bottleneck becomes more significant as event polarities
and ROI sizes increase. More event polarities are needed
when implementing deep event-based convolutional networks
and the use of larger ROI sizes can often be beneficial in
applications where the underlying signal SNR is low as in
event-based space imaging as discussed in [21].

While the direct approach to speeding up the ROI read
operation is to use faster RAM, other cache-like architectures

may provide a solution to the memory loading bottleneck
by taking advantage of the likely proximity in space of new
events relative to previous ones. In this approach, a slightly
larger local region than the ROI may be loaded from RAM
to local registers and with each new event, this locally stored
address space is first interrogated and if the newest event is
close to a previous one, its ROI will have been stored locally
and can be fetched at speed. If we assume spatial proximity
between temporally proximal events, such an approach is
likely to significantly reduce the memory bottleneck associated
with the ROI retrieval. In future work, we will investigate
potential design solutions to this problem with the aim of
providing better timing performance for larger, deeper event-
based networks in hardware.

V. CONCLUSION

In this work, a challenging SPAD imaging recogni-
tion dataset was presented. Three event-based process-
ing approaches were proposed: First-AND, On-Off and
On-Off-Bi-polar-Uni-Polar (OOBU) events. The classification
accuracy of these event-based methods was investigated and
compared to the original frame-based dataset using either
linear classifiers or feature extractor networks followed by a
linear classifier as a processor. Across all tests, the event-based
methods outperform their frame-based counterparts in terms
of accuracy and reduced data-rate. This is because the event
generation methods involve pooling of raw sensor data over
either time or space or both, significantly increasing the infor-
mation content of each event in comparison to the raw pixel
range values in the frame-based data. Within the event-based
approaches, the OOBU events resulted in the highest recog-
nition accuracy followed by First-And and On-Off events.
In terms of data-rates the First-AND events result in the lowest
data-rate followed by the On-Off and OOBU events resulting
in 81, 57 and 25 fold reduction in data-rate respectively.
In addition to the event-based generation methods, a range
of different network parameters were investigated with larger
networks shown to outperform smaller ones, trained networks
outperforming random networks and two-dimensional spatial
pooling outperforming one-dimensional pooling.

The systems investigated in this work provide a range
of well performing points in the event-based design space
which can be integrated with Direct Time of Flight SPAD
sensor hardware to provide event-based processing that not
only drastically reduces data-rate coming off the sensor, but
also the quality of the output data as it relates to challenging
tasks such as a view-invariant classification of large complex
datasets. By using the same learning methodology and the
same single-layer network structure and by testing across
multiple design dimensions such as pooling and network size,
we demonstrate exhaustively that the event-based methods
outperform the frame-based system across all parameters
while serving as a guide for the design of such networks
in hardware. The FPGA implementation of the event-based
processor demonstrates the hardware efficiency and processing
speed of the design for real-time applications of SPAD sensor
technology.
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