501 research outputs found

    Rapid sympathetic cooling to Fermi degeneracy on a chip

    Full text link
    Neutral fermions present new opportunities for testing many-body condensed matter systems, realizing precision atom interferometry, producing ultra-cold molecules, and investigating fundamental forces. However, since their first observation, quantum degenerate Fermi gases (DFGs) have continued to be challenging to produce, and have been realized in only a handful of laboratories. In this Letter, we report the production of a DFG using a simple apparatus based on a microfabricated magnetic trap. Similar approaches applied to Bose-Einstein Condensation (BEC) of 87Rb have accelerated evaporative cooling and eliminated the need for multiple vacuum chambers. We demonstrate sympathetic cooling for the first time in a microtrap, and cool 40K to Fermi degeneracy in just six seconds -- faster than has been possible in conventional magnetic traps. To understand our sympathetic cooling trajectory, we measure the temperature dependence of the 40K-87Rb cross-section and observe its Ramsauer-Townsend reduction.Comment: 5 pages, 4 figures (v3: new collision data, improved atom number calibration, revised text, improved figures.

    Phase-slip induced dissipation in an atomic Bose-Hubbard system

    Full text link
    Phase slips play a primary role in dissipation across a wide spectrum of bosonic systems, from determining the critical velocity of superfluid helium to generating resistance in thin superconducting wires. This subject has also inspired much technological interest, largely motivated by applications involving nanoscale superconducting circuit elements, e.g., standards based on quantum phase-slip junctions. While phase slips caused by thermal fluctuations at high temperatures are well understood, controversy remains over the role of phase slips in small-scale superconductors. In solids, problems such as uncontrolled noise sources and disorder complicate the study and application of phase slips. Here we show that phase slips can lead to dissipation for a clean and well-characterized Bose-Hubbard (BH) system by experimentally studying transport using ultra-cold atoms trapped in an optical lattice. In contrast to previous work, we explore a low velocity regime described by the 3D BH model which is not affected by instabilities, and we measure the effect of temperature on the dissipation strength. We show that the damping rate of atomic motion-the analogue of electrical resistance in a solid-in the confining parabolic potential fits well to a model that includes finite damping at zero temperature. The low-temperature behaviour is consistent with the theory of quantum tunnelling of phase slips, while at higher temperatures a cross-over consistent with the transition to thermal activation of phase slips is evident. Motion-induced features reminiscent of vortices and vortex rings associated with phase slips are also observed in time-of-flight imaging.Comment: published in Nature 453, 76 (2008

    Identification of the Schistosoma mansoni TNF-Alpha Receptor Gene and the Effect of Human TNF-Alpha on the Parasite Gene Expression Profile

    Get PDF
    Schistosoma mansoni is the major causative agent of schistosomiasis in the Americas. This parasite takes advantage of host signaling molecules such as cytokines and hormones to complete its development inside the host. Tumor necrosis factor-alpha (TNF-α) is one of the most important host cytokines involved in the inflammatory response. When cercariae, the infective stage, penetrates the human skin the release of TNF-α is started. In this work the authors describe the complete sequence of a possible TNF-α receptor in S. mansoni and detect that the receptor is most highly expressed in cercariae among all life cycle stages. Aiming to mimic the situation at the site of skin penetration, cercariae were mechanically transformed in vitro into schistosomula and exposed to human TNF-α. Exposure of early-developing schistosomula to the human hormone caused a large-scale change in the expression of parasite genes. Exposure of adult worms to human TNF-α caused gene expression changes as well, and the set of parasite altered genes in the adult parasite was different from that of schistosomula. This work increases the number of known signaling pathways of the parasite, and opens new perspectives into understanding the molecular components of TNF-α response as well as into possibly interfering with parasite–host interaction

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Australian health care providers' views on opt-out HIV testing

    Get PDF
    Background: Opt-out HIV testing is a novel concept in Australia. In the opt-out approach, health care providers (HCPs) routinely test patients for HIV unless they explicitly decline or defer. Opt-out HIV testing is only performed with the patients' consent, but pre-test counselling is abbreviated. Australian national testing guidelines do not currently recommend opt-out HIV testing for the general population. Non-traditional approaches to HIV testing (such as opt-out) could identify HIV infections and facilitate earlier treatment, which is particularly important now that HIV is a chronic, manageable disease. Our aim was to explore HCPs' attitudes toward opt-out HIV testing in an Australian context, to further understanding of its acceptability and feasibility. Methods: In this qualitative study, we used purposeful sampling to recruit HCPs who were likely to have experience with HIV testing in Western Australia. We interviewed them using a semi-structured guide and used content analysis as per Graneheim to code the data. Codes were then merged into subcategories and finally themes that unified the underlying concepts. We refined these themes through discussion among the research team. Results: Twenty four HCPs participated. Eleven participants had a questioning attitude toward opt-out HIV testing, while eleven favoured the approach. The remaining two participants had more nuanced perspectives that incorporated some characteristics of the questioning and favouring attitudes. Participants' views about opt-out HIV testing largely fell into two contrasting themes: normalisation and routinisation versus exceptionalism; and a need for proof versus openness to new approaches. Conclusion: Most HCPs in this study had dichotomous attitudes toward opt-out HIV testing, reflecting contrasting analytical styles. While some HCPs viewed it favourably, with the perceived benefits outweighing the perceived costs, others preferred to have evidence of efficacy and cost-effectiveness

    Characterization of Schistosome Tegumental Alkaline Phosphatase (SmAP)

    Get PDF
    Schistosomes are parasitic platyhelminths that currently infect over 200 million people globally. The parasites can live for years in a putatively hostile environment - the blood of vertebrates. We have hypothesized that the unusual schistosome tegument (outer-covering) plays a role in protecting parasites in the blood; by impeding host immunological signaling pathways we suggest that tegumental molecules help create an immunologically privileged environment for schistosomes. In this work, we clone and characterize a schistosome alkaline phosphatase (SmAP), a predicted ∼60 kDa glycoprotein that has high sequence conservation with members of the alkaline phosphatase protein family. The SmAP gene is most highly expressed in intravascular parasite life stages. Using immunofluorescence and immuno-electron microscopy, we confirm that SmAP is expressed at the host/parasite interface and in internal tissues. The ability of living parasites to cleave exogenous adenosine monophosphate (AMP) and generate adenosine is very largely abolished when SmAP gene expression is suppressed following RNAi treatment targeting the gene. These results lend support to the hypothesis that schistosome surface enzymes such as SmAP could dampen host immune responses against the parasites by generating immunosuppressants such as adenosine to promote their survival. This notion does not rule out other potential functions for the adenosine generated e.g. in parasite nutrition

    A novel treatment of cystic fibrosis acting on-target:cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR

    Get PDF
    We previously reported that the combination of two safe proteostasis regulators, cysteamine and epigallocatechin gallate (EGCG), can be used to improve deficient expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in patients homozygous for the CFTR Phe508del mutation. Here we provide the proof-of-concept that this combination treatment restored CFTR function and reduced lung inflammation (P<0.001) in Phe508del/Phe508del or Phe508del/null-Cftr (but not in Cftr-null mice), provided that such mice were autophagy-competent. Primary nasal cells from patients bearing different class II CFTR mutations, either in homozygous or compound heterozygous form, responded to the treatment in vitro. We assessed individual responses to cysteamine plus EGCG in a single-centre, open-label phase-2 trial. The combination treatment decreased sweat chloride from baseline, increased both CFTR protein and function in nasal cells, restored autophagy in such cells, decreased CXCL8 and TNF-α in the sputum, and tended to improve respiratory function. These positive effects were particularly strong in patients carrying Phe508del CFTR mutations in homozygosity or heterozygosity. However, a fraction of patients bearing other CFTR mutations failed to respond to therapy. Importantly, the same patients whose primary nasal brushed cells did not respond to cysteamine plus EGCG in vitro also exhibited deficient therapeutic responses in vivo. Altogether, these results suggest that the combination treatment of cysteamine plus EGCG acts ‘on-target' because it can only rescue CFTR function when autophagy is functional (in mice) and improves CFTR function when a rescuable protein is expressed (in mice and men). These results should spur the further clinical development of the combination treatment

    Transcriptional Changes in Schistosoma mansoni during Early Schistosomula Development and in the Presence of Erythrocytes

    Get PDF
    Schistosome blood flukes cause more mortality and morbidity than any other human worm infection, but current control methods primarily rely on a single drug. There is a desperate need for new approaches to control this parasite, including vaccines. People become infected when the free-swimming larva, the cercaria, enters through the skin and becomes the schistosomulum. Schistosomula are susceptible to immune responses during their first few days in the host before they become adult parasites. We characterised the genes that these newly transformed parasites switch on when they enter the host to identify molecules that are critical for survival in the human host. Some of these highly up-regulated genes can be targeted for future development of new vaccines and drugs

    Antimicrobial resistance (AMR) nanomachines: mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation

    Get PDF
    In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics—the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex ‘nanomachines’ that drive survival of bacterial cells in antibiotic environments
    corecore