75 research outputs found

    Enabling object storage via shims for grid middleware

    Get PDF
    The Object Store model has quickly become the basis of most commercially successful mass storage infrastructure, backing so-called "Cloud" storage such as Amazon S3, but also underlying the implementation of most parallel distributed storage systems. Many of the assumptions in Object Store design are similar, but not identical, to concepts in the design of Grid Storage Elements, although the requirement for "POSIX-like" filesystem structures on top of SEs makes the disjunction seem larger. As modern Object Stores provide many features that most Grid SEs do not (block level striping, parallel access, automatic file repair, etc.), it is of interest to see how easily we can provide interfaces to typical Object Stores via plugins and shims for Grid tools, and how well experiments can adapt their data models to them. We present evaluation of, and first-deployment experiences with, (for example) Xrootd-Ceph interfaces for direct object-store access, as part of an initiative within GridPP[1] hosted at RAL. Additionally, we discuss the tradeoffs and experience of developing plugins for the currently-popular Ceph parallel distributed filesystem for the GFAL2 access layer, at Glasgow

    Storage Resource Manager version 2.2: design, implementation, and testing experience

    Get PDF
    Storage Services are crucial components of the Worldwide LHC Computing Grid Infrastructure spanning more than 200 sites and serving computing and storage resources to the High Energy Physics LHC communities. Up to tens of Petabytes of data are collected every year by the four LHC experiments at CERN. To process these large data volumes it is important to establish a protocol and a very efficient interface to the various storage solutions adopted by the WLCG sites. In this work we report on the experience acquired during the definition of the Storage Resource Manager v2.2 protocol. In particular, we focus on the study performed to enhance the interface and make it suitable for use by the WLCG communities. At the moment 5 different storage solutions implement the SRM v2.2 interface: BeStMan (LBNL), CASTOR (CERN and RAL), dCache (DESY and FNAL), DPM (CERN), and StoRM (INFN and ICTP). After a detailed inside review of the protocol, various test suites have been written identifying the most effective set of tests: the S2 test suite from CERN and the SRM-Tester test suite from LBNL. Such test suites have helped verifying the consistency and coherence of the proposed protocol and validating existing implementations. We conclude our work describing the results achieved

    Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    Get PDF
    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (OR=1.11, P=5.7×10−15), which persisted after excluding loci implicated in previous studies (OR=1.07, P=1.7 ×10−6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 ×10−11) and neurobehavioral phenotypes in mouse (OR = 1.18, P= 7.3 ×10−5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination

    No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study

    Get PDF
    It is well known that inbreeding increases the risk of recessive monogenic diseases, but it is less certain whether it contributes to the etiology of complex diseases such as schizophrenia. One way to estimate the effects of inbreeding is to examine the association between disease diagnosis and genome-wide autozygosity estimated using runs of homozygosity (ROH) in genome-wide single nucleotide polymorphism arrays. Using data for schizophrenia from the Psychiatric Genomics Consortium (n = 21,868), Keller et al. (2012) estimated that the odds of developing schizophrenia increased by approximately 17% for every additional percent of the genome that is autozygous (β = 16.1, CI(β) = [6.93, 25.7], Z = 3.44, p = 0.0006). Here we describe replication results from 22 independent schizophrenia case-control datasets from the Psychiatric Genomics Consortium (n = 39,830). Using the same ROH calling thresholds and procedures as Keller et al. (2012), we were unable to replicate the significant association between ROH burden and schizophrenia in the independent PGC phase II data, although the effect was in the predicted direction, and the combined (original + replication) dataset yielded an attenuated but significant relationship between Froh and schizophrenia (β = 4.86,CI(β) = [0.90,8.83],Z = 2.40,p = 0.02). Since Keller et al. (2012), several studies reported inconsistent association of ROH burden with complex traits, particularly in case-control data. These conflicting results might suggest that the effects of autozygosity are confounded by various factors, such as socioeconomic status, education, urbanicity, and religiosity, which may be associated with both real inbreeding and the outcome measures of interest

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    A. Palotie on työryhmän Schizophrenia Working Grp Psychiat jäsen.We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P = 1 x 10(-4)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P = 8.4 x 10(-7)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.Peer reviewe

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders.

    Get PDF
    Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development

    Genetic Overlap Between Alzheimer’s Disease and Bipolar Disorder Implicates the MARK2 and VAC14 Genes

    Get PDF
    Background: Alzheimer's disease (AD) and bipolar disorder (BIP) are complex traits influenced by numerous common genetic variants, most of which remain to be detected. Clinical and epidemiological evidence suggest that AD and BIP are related. However, it is not established if this relation is of genetic origin. Here, we applied statistical methods based on the conditional false discovery rate (FDR) framework to detect genetic overlap between AD and BIP and utilized this overlap to increase the power to identify common genetic variants associated with either or both traits. Methods: We obtained genome wide association studies data from the International Genomics of Alzheimer's Project part 1 (17,008 AD cases and 37,154 controls) and the Psychiatric Genetic Consortium Bipolar Disorder Working Group (20,352 BIP cases and 31,358 controls). We used conditional QQ-plots to assess overlap in common genetic variants between AD and BIP. We exploited the genetic overlap to re-rank test-statistics for AD and BIP and improve detection of genetic variants using the conditional FDR framework. Results: Conditional QQ-plots demonstrated a polygenic overlap between AD and BIP. Using conditional FDR, we identified one novel genomic locus associated with AD, and nine novel loci associated with BIP. Further, we identified two novel loci jointly associated with AD and BIP implicating the MARK2 gene (lead SNP rs10792421, conjunctional FDR=0.030, same direction of effect) and the VAC14 gene (lead SNP rs11649476, conjunctional FDR=0.022, opposite direction of effect). Conclusions: We found polygenic overlap between AD and BIP and identified novel loci for each trait and two jointly associated loci. Further studies should examine if the shared loci implicating the MARK2 and VAC14 genes could explain parts of the shared and distinct features of AD and BIP

    Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood

    Get PDF
    J. Lönnqvist on työryhmän Psychiat Genomics Consortium jäsen.Genetic correlation is a key population parameter that describes the shared genetic architecture of complex traits and diseases. It can be estimated by current state-of-art methods, i.e., linkage disequilibrium score regression (LDSC) and genomic restricted maximum likelihood (GREML). The massively reduced computing burden of LDSC compared to GREML makes it an attractive tool, although the accuracy (i.e., magnitude of standard errors) of LDSC estimates has not been thoroughly studied. In simulation, we show that the accuracy of GREML is generally higher than that of LDSC. When there is genetic heterogeneity between the actual sample and reference data from which LD scores are estimated, the accuracy of LDSC decreases further. In real data analyses estimating the genetic correlation between schizophrenia (SCZ) and body mass index, we show that GREML estimates based on similar to 150,000 individuals give a higher accuracy than LDSC estimates based on similar to 400,000 individuals (from combinedmeta-data). A GREML genomic partitioning analysis reveals that the genetic correlation between SCZ and height is significantly negative for regulatory regions, which whole genome or LDSC approach has less power to detect. We conclude that LDSC estimates should be carefully interpreted as there can be uncertainty about homogeneity among combined meta-datasets. We suggest that any interesting findings from massive LDSC analysis for a large number of complex traits should be followed up, where possible, with more detailed analyses with GREML methods, even if sample sizes are lesser.Peer reviewe

    The genetics of the mood disorder spectrum:genome-wide association analyses of over 185,000 cases and 439,000 controls

    Get PDF
    Background Mood disorders (including major depressive disorder and bipolar disorder) affect 10-20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Despite their diagnostic distinction, multiple approaches have shown considerable sharing of risk factors across the mood disorders. Methods To clarify their shared molecular genetic basis, and to highlight disorder-specific associations, we meta-analysed data from the latest Psychiatric Genomics Consortium (PGC) genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; non-overlapping N = 609,424). Results Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More genome-wide significant loci from the PGC analysis of major depression than bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell-types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment – positive in bipolar disorder but negative in major depressive disorder. Conclusions The mood disorders share several genetic associations, and can be combined effectively to increase variant discovery. However, we demonstrate several differences between these disorders. Analysing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum
    corecore