682 research outputs found

    Unparticle Searches Through Gamma Gamma Scattering

    Full text link
    We investigate the effects of unparticles on gamma gamma--> gamma gamma scattering for photon collider mode of the future multi-TeV e^+e^- linear collider. We show the effects of unparticles on the differential, and total scattering cross sections for different polarization configurations. Considering 1-loop Standard Model background contributions from the charged fermions, and W^{+-} bosons to the cross section, we calculate the upper limits on the unparticle couplings lambda_0 to the photons for various values of the scaling dimension d(1<d<2) at sqrt{s}=0.5-5 TeV.Comment: 15 pages, 5 figures, 2 table

    Implications of the HERA Events for the R-Parity Breaking SUSY Signals at Tevatron

    Get PDF
    The favoured R-parity violating SUSY scenarios for the anomalous HERA events correspond to top and charm squark production via the λ131\lambda'_{131} and λ121\lambda'_{121} couplings. In both cases the corresponding electronic branching fractions of the squarks are expected to be 1\ll 1. Consequently the canonical leptoquark signature is incapable of probing these scenarios at the Tevatron collider over most of the MSSM parameter space. We suggest alternative signatures for probing them at Tevatron, which seem to be viable over the entire range of MSSM parameters.Comment: 20 pages Latex file with 4 ps files containing 4 figure

    Schwinger-Dyson approach to non-equilibrium classical field theory

    Get PDF
    In this paper we discuss a Schwinger-Dyson [SD] approach for determining the time evolution of the unequal time correlation functions of a non-equilibrium classical field theory, where the classical system is described by an initial density matrix at time t=0t=0. We focus on λϕ4\lambda \phi^4 field theory in 1+1 space time dimensions where we can perform exact numerical simulations by sampling an ensemble of initial conditions specified by the initial density matrix. We discuss two approaches. The first, the bare vertex approximation [BVA], is based on ignoring vertex corrections to the SD equations in the auxiliary field formalism relevant for 1/N expansions. The second approximation is a related approximation made to the SD equations of the original formulation in terms of ϕ\phi alone. We compare these SD approximations as well as a Hartree approximation with exact numerical simulations. We find that both approximations based on the SD equations yield good agreement with exact numerical simulations and cure the late time oscillation problem of the Hartree approximation. We also discuss the relationship between the quantum and classical SD equations.Comment: 36 pages, 5 figure

    Lepton Flavour Violating Leptonic/Semileptonic Decays of Charged Leptons in the Minimal Supersymmetric Standard Model

    Full text link
    We consider the leptonic and semileptonic (SL) lepton flavour violating (LFV) decays of the charged leptons in the minimal supersymmetric standard model (MSSM). The formalism for evaluation of branching fractions for the SL LFV charged-lepton decays with one or two pseudoscalar mesons, or one vector meson in the final state, is given. Previous amplitudes for the SL LFV charged-lepton decays in MSSM are improved, for instance the γ\gamma-penguin amplitude is corrected to assure the gauge invariance. The decays are studied not only in the model-independent formulation of the theory in the frame of MSSM, but also within the frame of the minimal supersymmetric SO(10) model within which the parameters of the MSSM are determined. The latter model gives predictions for the neutrino-Dirac Yukawa coupling matrix, once free parameters in the model are appropriately fixed to accommodate the recent neutrino oscillation data. Using this unambiguous neutrino-Dirac Yukawa couplings, we calculate the LFV leptonic and SL decay processes assuming the minimal supergravity scenario. A very detailed numerical analysis is done to constrain the MSSM parameters. Numerical results for SL LFV processes are given, for instance for tau -> e (mu) pi0, tau -> e (mu) eta, tau -> e (mu) eta', tau -> e (mu) rho0, tau -> e (mu) phi, tau -> e (mu) omega, etc.Comment: 36 pages, 3 tables, 5 .eps figure

    Dark matter and Colliders searches in the MSSM

    Full text link
    We study the complementarity between dark matter experiments (direct detection and indirect detections) and accelerator facilities (the CERN LHC and a s=1\sqrt{s}= 1 TeV e+ee^+e^- Linear Collider) in the framework of the constrained Minimal Supersymmetric Standard Model (MSSM). We show how non--universality in the scalar and gaugino sectors can affect the experimental prospects to discover the supersymmetric particles. The future experiments will cover a large part of the parameter space of the MSSM favored by WMAP constraint on the relic density, but there still exist some regions beyond reach for some extreme (fine tuned) values of the supersymmetric parameters. Whereas the Focus Point region characterized by heavy scalars will be easily probed by experiments searching for dark matter, the regions with heavy gauginos and light sfermions will be accessible more easily by collider experiments. More informations on both supersymmetry and astrophysics parameters can be thus obtained by correlating the different signals.Comment: 25 pages, 10 figures, corrected typos and reference adde

    Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions

    Get PDF
    Although satellite-based variables have for long been expected to be key components to a unified and global biodiversity monitoring strategy, a definitive and agreed list of these variables still remains elusive. The growth of interest in biodiversity variables observable from space has been partly underpinned by the development of the essential biodiversity variable (EBV) framework by the Group on Earth Observations – Biodiversity Observation Network, which itself was guided by the process of identifying essential climate variables. This contribution aims to advance the development of a global biodiversity monitoring strategy by updating the previously published definition of EBV, providing a definition of satellite remote sensing (SRS) EBVs and introducing a set of principles that are believed to be necessary if ecologists and space agencies are to agree on a list of EBVs that can be routinely monitored from space. Progress toward the identification of SRS-EBVs will require a clear understanding of what makes a biodiversity variable essential, as well as agreement on who the users of the SRS-EBVs are. Technological and algorithmic developments are rapidly expanding the set of opportunities for SRS in monitoring biodiversity, and so the list of SRS-EBVs is likely to evolve over time. This means that a clear and common platform for data providers, ecologists, environmental managers, policy makers and remote sensing experts to interact and share ideas needs to be identified to support long-term coordinated actions

    Effect of Composition Changes on the Structural Relaxation of a Binary Mixture

    Full text link
    Within the mode-coupling theory for idealized glass transitions, we study the evolution of structural relaxation in binary mixtures of hard spheres with size ratios δ\delta of the two components varying between 0.5 and 1.0. We find two scenarios for the glassy dynamics. For small size disparity, the mixing yields a slight extension of the glass regime. For larger size disparity, a plasticization effect is obtained, leading to a stabilization of the liquid due to mixing. For all δ\delta, a decrease of the elastic moduli at the transition due to mixing is predicted. A stiffening of the glass structure is found as is reflected by the increase of the Debye-Waller factors at the transition points. The critical amplitudes for density fluctuations at small and intermediate wave vectors decrease upon mixing, and thus the universal formulas for the relaxation near the plateau values describe a slowing down of the dynamics upon mixing for the first step of the two-step relaxation scenario. The results explain the qualitative features of mixing effects reported by Williams and van Megen [Phys. Rev. E \textbf{64}, 041502 (2001)] for dynamical light-scattering measurements on binary mixtures of hard-sphere-like colloids with size ratio δ=0.6\delta=0.6

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore