82 research outputs found

    Ethical hurdles in the prioritization of oncology care

    Get PDF
    With finite resources, healthcare payers must make difficult choices regarding spending and the ethical distribution of funds. Here, we describe some of the ethical issues surrounding inequity in healthcare in nine major European countries, using cancer care as an example. To identify relevant studies, we conducted a systematic literature search. The results of the literature review suggest that although prevention, access to early diagnosis, and radiotherapy are key factors associated with good outcomes in oncology, public and political attention often focusses on the availability of pharmacological treatments. In some countries this focus may divert funding towards cancer drugs, for example through specific cancer drugs funds, leading to reduced expenditure on other areas of cancer care, including prevention, and potentially on other diseases. In addition, as highly effective, expensive agents are developed, the use of value-based approaches may lead to unacceptable impacts on health budgets, leading to a potential need to re-evaluate current cost-effectiveness thresholds. We anticipate that the question of how to fund new therapies equitably will become even more challenging in the future, with the advent of expensive, innovative, breakthrough treatments in other therapeutic areas

    18F-FDG PET and perfusion SPECT in the diagnosis of Alzheimer and Lewy body dementias.

    Get PDF
    UNLABELLED: Brain imaging with glucose ((18)F-FDG) PET or blood flow (hexamethylpropyleneamine oxime) SPECT is widely used for the differential diagnosis of dementia, though direct comparisons to clearly establish superiority of one method have not been undertaken. METHODS: Subjects with Alzheimer disease (AD; n = 38) and dementia with Lewy bodies (DLB; n = 30) and controls (n = 30) underwent (18)F-FDG PET and SPECT in balanced order. The main outcome measure was area under the curve (AUC) of receiver-operating-characteristic analysis of visual scan rating. RESULTS: Consensus diagnosis with (18)F-FDG PET was superior to SPECT for both dementia vs. no-dementia (AUC = 0.93 vs. 0.72, P = 0.001) and AD vs. DLB (AUC = 0.80 vs. 0.58, P = 0.005) comparisons. The sensitivity and specificity for dementia/no-dementia was 85% and 90%, respectively, for (18)F-FDG PET and 71% and 70%, respectively, for SPECT. CONCLUSION: (18)F-FDG PET was significantly superior to blood flow SPECT. We recommend (18)F-FDG PET be performed instead of perfusion SPECT for the differential diagnosis of degenerative dementia if functional imaging is indicated.We thank the Dementia and Neurodegenerative Diseases Research Network (DeNDRoN) for valuable support with clinical recruitment. We also thank the National Institute for Health Research.This research was originally published in JNM. O’Brien JT, Firbank MJ, Davison C, Barnett N, Bamford C, Donaldson C, Olsen K, Herholz K, Williams D, Lloyd J. 18F-FDG PET and Perfusion SPECT in the Diagnosis of Alzheimer and Lewy Body Dementias. JNM. 2014;55:1959–1965. © by the Society of Nuclear Medicine and Molecular Imaging, Inc

    Pro-apoptotic protein–protein interactions of the extended N-AChE terminus

    Get PDF
    The N-terminally extended “synaptic” acetylcholinesterase variant N-AChE-S operates to promote apoptosis; however, the protein partners involved in this function remain unknown. Here, we report that when microinjected to fertilized mouse oocytes, N-AChE-S caused embryonic death as early as the zygotic stage. To identify the putative protein partners involved, we first tried yeast two hybrid screening, but this approach failed, probably because of the N-AChE-S-induced lethality. In contrast, sequence analysis and a corresponding peptide array revealed possible partners, which were validated by co-immunoprecipitation. These include the kinases GSK3, Aurora and GAK, the membrane integrin receptors, and the death receptor FAS. Each of these could potentially modulate N-AChE-S-induced apoptosis with possible therapeutic value for the treatment of Alzheimer’s disease

    TDP-43-Mediated Neuron Loss In Vivo Requires RNA-Binding Activity

    Get PDF
    Alteration and/or mutations of the ribonucleoprotein TDP-43 have been firmly linked to human neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The relative impacts of TDP-43 alteration, mutation, or inherent protein function on neural integrity, however, remain less clear—a situation confounded by conflicting reports based on transient and/or random-insertion transgenic expression. We therefore performed a stringent comparative investigation of impacts of these TDP-43 modifications on neural integrity in vivo. To achieve this, we systematically screened ALS/FTLD-associated and synthetic TDP-43 isoforms via same-site gene insertion and neural expression in Drosophila; followed by transposon-based motor neuron-specific transgenesis in a chick vertebrate system. Using this bi-systemic approach we uncovered a requirement of inherent TDP-43 RNA-binding function—but not ALS/FTLD-linked mutation, mislocalization, or truncation—for TDP-43-mediated neurotoxicity in vivo

    Nutrition for the ageing brain: towards evidence for an optimal diet

    Get PDF
    As people age they become increasingly susceptible to chronic and extremely debilitating brain diseases. The precise cause of the neuronal degeneration underlying these disorders, and indeed normal brain ageing remains however elusive. Considering the limits of existing preventive methods, there is a desire to develop effective and safe strategies. Growing preclinical and clinical research in healthy individuals or at the early stage of cognitive decline has demonstrated the beneficial impact of nutrition on cognitive functions. The present review is the most recent in a series produced by the Nutrition and Mental Performance Task Force under the auspice of the International Life Sciences Institute Europe (ILSI Europe). The latest scientific advances specific to how dietary nutrients and non-nutrient may affect cognitive ageing are presented. Furthermore, several key points related to mechanisms contributing to brain ageing, pathological conditions affecting brain function, and brain biomarkers are also discussed. Overall, findings are inconsistent and fragmented and more research is warranted to determine the underlying mechanisms and to establish dose-response relationships for optimal brain maintenance in different population subgroups. Such approaches are likely to provide the necessary evidence to develop research portfolios that will inform about new dietary recommendations on how to prevent cognitive decline

    Efficient posterior probability mapping using savage-dickey ratios.

    Get PDF
    Statistical Parametric Mapping (SPM) is the dominant paradigm for mass-univariate analysis of neuroimaging data. More recently, a Bayesian approach termed Posterior Probability Mapping (PPM) has been proposed as an alternative. PPM offers two advantages: (i) inferences can be made about effect size thus lending a precise physiological meaning to activated regions, (ii) regions can be declared inactive. This latter facility is most parsimoniously provided by PPMs based on Bayesian model comparisons. To date these comparisons have been implemented by an Independent Model Optimization (IMO) procedure which separately fits null and alternative models. This paper proposes a more computationally efficient procedure based on Savage-Dickey approximations to the Bayes factor, and Taylor-series approximations to the voxel-wise posterior covariance matrices. Simulations show the accuracy of this Savage-Dickey-Taylor (SDT) method to be comparable to that of IMO. Results on fMRI data show excellent agreement between SDT and IMO for second-level models, and reasonable agreement for first-level models. This Savage-Dickey test is a Bayesian analogue of the classical SPM-F and allows users to implement model comparison in a truly interactive manner

    The past, present, and future of the Brain Imaging Data Structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS
    corecore