31 research outputs found

    Autonomous Agent for Beyond Visual Range Air Combat: A Deep Reinforcement Learning Approach

    Full text link
    This work contributes to developing an agent based on deep reinforcement learning capable of acting in a beyond visual range (BVR) air combat simulation environment. The paper presents an overview of building an agent representing a high-performance fighter aircraft that can learn and improve its role in BVR combat over time based on rewards calculated using operational metrics. Also, through self-play experiments, it expects to generate new air combat tactics never seen before. Finally, we hope to examine a real pilot's ability, using virtual simulation, to interact in the same environment with the trained agent and compare their performances. This research will contribute to the air combat training context by developing agents that can interact with real pilots to improve their performances in air defense missions

    ASA-SimaaS: Advancing Digital Transformation through Simulation Services in the Brazilian Air Force

    Full text link
    This work explores the use of military simulations in predicting and evaluating the outcomes of potential scenarios. It highlights the evolution of military simulations and the increased capabilities that have arisen due to the advancement of artificial intelligence. Also, it discusses the various applications of military simulations, such as developing tactics and employment doctrines, training decision-makers, evaluating new acquisitions, and developing new technologies. The paper then focuses on the Brazilian Air Force's efforts to create its own simulation tool, the Aerospace Simulation Environment (Ambiente de Simula\c{c}\~ao Aeroespacial -- ASA in Portuguese), and how this cloud-based service called ASA Simulation as a Service (ASA-SimaaS) can provide greater autonomy and economy for the military force. The main contribution of this work is to present the ASA-SimaaS solution as a means of empowering digital transformation in defense scenarios, establishing a partnership network, and improving the military's simulation capabilities and competitiveness

    SoRTS: Learned Tree Search for Long Horizon Social Robot Navigation

    Full text link
    The fast-growing demand for fully autonomous robots in shared spaces calls for the development of trustworthy agents that can safely and seamlessly navigate in crowded environments. Recent models for motion prediction show promise in characterizing social interactions in such environments. Still, adapting them for navigation is challenging as they often suffer from generalization failures. Prompted by this, we propose Social Robot Tree Search (SoRTS), an algorithm for safe robot navigation in social domains. SoRTS aims to augment existing socially aware motion prediction models for long-horizon navigation using Monte Carlo Tree Search. We use social navigation in general aviation as a case study to evaluate our approach and further the research in full-scale aerial autonomy. In doing so, we introduce XPlaneROS, a high-fidelity aerial simulator that enables human-robot interaction. We use XPlaneROS to conduct a first-of-its-kind user study where 26 FAA-certified pilots interact with a human pilot, our algorithm, and its ablation. Our results, supported by statistical evidence, show that SoRTS exhibits a comparable performance to competent human pilots, significantly outperforming its ablation. Finally, we complement these results with a broad set of self-play experiments to showcase our algorithm's performance in scenarios with increasing complexity.Comment: arXiv admin note: substantial text overlap with arXiv:2304.0142

    ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Diversity and ethics in trauma and acute care surgery teams: results from an international survey

    Get PDF
    Background Investigating the context of trauma and acute care surgery, the article aims at understanding the factors that can enhance some ethical aspects, namely the importance of patient consent, the perceptiveness of the ethical role of the trauma leader, and the perceived importance of ethics as an educational subject. Methods The article employs an international questionnaire promoted by the World Society of Emergency Surgery. Results Through the analysis of 402 fully filled questionnaires by surgeons from 72 different countries, the three main ethical topics are investigated through the lens of gender, membership of an academic or non-academic institution, an official trauma team, and a diverse group. In general terms, results highlight greater attention paid by surgeons belonging to academic institutions, official trauma teams, and diverse groups. Conclusions Our results underline that some organizational factors (e.g., the fact that the team belongs to a university context or is more diverse) might lead to the development of a higher sensibility on ethical matters. Embracing cultural diversity forces trauma teams to deal with different mindsets. Organizations should, therefore, consider those elements in defining their organizational procedures. Level of evidence Trauma and acute care teams work under tremendous pressure and complex circumstances, with their members needing to make ethical decisions quickly. The international survey allowed to shed light on how team assembly decisions might represent an opportunity to coordinate team member actions and increase performance

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed

    Evaluation of Chemical Constituents and Antioxidant Activity of Coconut Water (Cocus nucifera L.) and Caffeic Acid in Cell Culture

    No full text
    Coconut water contains several uncharacterized substances and is widely used in the human consumption. In this paper we detected and quantified ascorbic acid and caffeic acid and total phenolics in several varieties of coconut using HPLS/MS/MS (25.8 ± 0.6 ”g/mL and 1.078 ± 0.013 ”g/mL and 99.7 ”g/mL, respectively, in the green dwarf coconut water, or 10 mg and 539 ”g and 39.8 mg for units of coconut consumed, 500 ± 50 mL). The antioxidant potential of four coconut varieties (green dwarf, yellow dwarf, red dwarf and yellow Malaysian) was compared with two industrialized coconut waters and the lyophilized water of the green dwarf variety. All varieties were effective in scavenging the DPPH radical (IC50=73 ”L) and oxide nitric (0.1 mL with an IP of 29.9%) as well as in inhibiting the in vitro production of thiobarbituric acid reactive substances (1 mL with an IP of 34.4%), highlighting the antioxidant properties of the green dwarf which it is the most common used. In cell culture, the green dwarf water was efficient in protecting against oxidative damages induced by hydrogen peroxide
    corecore