660 research outputs found

    Supersymmetric Boundaries and Junctions in Four Dimensions

    Get PDF
    We make a comprehensive study of (rigid) N=1 supersymmetric sigma-models with general K\"ahler potentials K and superpotentials w on four-dimensional space-times with boundaries. We determine the minimal (non-supersymmetric) boundary terms one must add to the standard bulk action to make it off-shell invariant under half the supersymmetries without imposing any boundary conditions. Susy boundary conditions do arise from the variational principle when studying the dynamics. Upon including an additional boundary action that depends on an arbitrary real boundary potential B one can generate very general susy boundary conditions. We show that for any set of susy boundary conditions that define a Lagrangian submanifold of the K\"ahler manifold, an appropriate boundary potential B can be found. Thus the non-linear sigma-model on a manifold with boundary is characterised by the tripel (K,B,w). We also discuss the susy coupling to new boundary superfields and generalize our results to supersymmetric junctions between completely different susy sigma-models, living on adjacent domains and interacting through a "permeable" wall. We obtain the supersymmetric matching conditions that allow us to couple models with different K\"ahler potentials and superpotentials on each side of the wall.Comment: 38 pages, 1 figur

    Towards quantum thermodynamics in electronic circuits

    Get PDF
    Electronic circuits operating at sub-kelvin temperatures are attractive candidates for studying classical and quantum thermodynamics: their temperature can be controlled and measured locally with exquisite precision, and they allow experiments with large statistical samples. The availability and rapid development of devices such as quantum dots, single-electron boxes and superconducting qubits only enhance their appeal. But although these systems provide fertile ground for studying heat transport, entropy production and work in the context of quantum mechanics, the field remains in its infancy experimentally. Here, we review some recent experiments on quantum heat transport, fluctuation relations and implementations of Maxwell’s demon, revealing the rich physics yet to be fully probed in these systems.Peer reviewe

    Peptide Bond Distortions from Planarity: New Insights from Quantum Mechanical Calculations and Peptide/Protein Crystal Structures

    Get PDF
    By combining quantum-mechanical analysis and statistical survey of peptide/protein structure databases we here report a thorough investigation of the conformational dependence of the geometry of peptide bond, the basic element of protein structures. Different peptide model systems have been studied by an integrated quantum mechanical approach, employing DFT, MP2 and CCSD(T) calculations, both in aqueous solution and in the gas phase. Also in absence of inter-residue interactions, small distortions from the planarity are more a rule than an exception, and they are mainly determined by the backbone ψ dihedral angle. These indications are fully corroborated by a statistical survey of accurate protein/peptide structures. Orbital analysis shows that orbital interactions between the σ system of Cα substituents and the π system of the amide bond are crucial for the modulation of peptide bond distortions. Our study thus indicates that, although long-range inter-molecular interactions can obviously affect the peptide planarity, their influence is statistically averaged. Therefore, the variability of peptide bond geometry in proteins is remarkably reproduced by extremely simplified systems since local factors are the main driving force of these observed trends. The implications of the present findings for protein structure determination, validation and prediction are also discussed

    Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Get PDF
    The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails) of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN) order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.Comment: 109 pages, 1 figure; this version is an update of the Living Review article originally published in 2002; available on-line at http://www.livingreviews.org

    The Rossiter-McLaughlin effect in Exoplanet Research

    Full text link
    The Rossiter-McLaughlin effect occurs during a planet's transit. It provides the main means of measuring the sky-projected spin-orbit angle between a planet's orbital plane, and its host star's equatorial plane. Observing the Rossiter-McLaughlin effect is now a near routine procedure. It is an important element in the orbital characterisation of transiting exoplanets. Measurements of the spin-orbit angle have revealed a surprising diversity, far from the placid, Kantian and Laplacian ideals, whereby planets form, and remain, on orbital planes coincident with their star's equator. This chapter will review a short history of the Rossiter-McLaughlin effect, how it is modelled, and will summarise the current state of the field before describing other uses for a spectroscopic transit, and alternative methods of measuring the spin-orbit angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H. Deeg & J.A. Belmont

    A cross-sectional testing of The Iowa Personality Disorder Screen in a psychiatric outpatient setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients suspected of personality disorders (PDs) by general practitioners are frequently referred to psychiatric outpatient clinics (POCs). In that setting an effective screening instrument for PDs would be helpful due to resource constraints. This study evaluates the properties of The Iowa Personality Disorder Screen (IPDS) as a screening instrument for PDs at a POC.</p> <p>Methods</p> <p>In a cross-sectional design 145 patients filled in the IPDS and were examined with the SCID-II interview as reference. Various case-findings properties were tested, interference of socio-demographic and other psychopathology were investigated by logistic regression and relationships of the IPDS and the concept of PDs were studied by a latent variable path analysis.</p> <p>Results</p> <p>We found that socio-demographic and psychopathological factors hardly disturbed the IPDS as screening instrument. With a cut-off ≄4 the 11 items IPDS version had sensitivity 0.77 and specificity 0.71. A brief 5 items version showed sensitivity 0.82 and specificity 0.74 with cut-off ≄ 2. With exception for one item, the IPDS variables loaded adequately on their respective first order variables, and the five first order variables loaded in general adequately on their second order variable.</p> <p>Conclusion</p> <p>Our results support the IPDS as a useful screening instrument for PDs present or absent in the POC setting.</p

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques
    • 

    corecore