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Abstract 

The ultraviolet imager (UVI) has been developed for the Akatsuki spacecraft (Venus Climate Orbiter mission). The 
UVI takes ultraviolet (UV) images of the solar radiation reflected by the Venusian clouds with narrow bandpass filters 
centered at the 283 and 365 nm wavelengths. There are absorption bands of SO2 and unknown absorbers in these 
wavelength regions. The UV images provide the spatial distribution of SO2 and the unknown absorber around cloud 
top altitudes. The images also allow us to understand the cloud top morphologies and haze properties. Nominal 
sequential images with 2-h intervals are used to understand the dynamics of the Venusian atmosphere by estimating 
the wind vectors at the cloud top altitude, as well as the mass transportation of UV absorbers. The UVI is equipped 
with off-axial catadioptric optics, two bandpass filters, a diffuser installed in a filter wheel moving with a step motor, 
and a high sensitivity charge-coupled device with UV coating. The UVI images have spatial resolutions ranging from 
200 m to 86 km at sub-spacecraft points. The UVI has been kept in good condition during the extended interplan‑
etary cruise by carefully designed operations that have maintained its temperature maintenance and avoided solar 
radiation damage. The images have signal-to-noise ratios of over 100 after onboard desmear processing.
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Background
Venus has a higher albedo than Earth, and its clouds scat-
ter solar radiation well. Venus’ image is featureless in 
the visible light region; however, the observed ultravio-
let (UV) images have a high contrast of bright and dark 
features, which reflects the distribution of UV absorbers. 
One of the UV absorbers is SO2, which has an absorp-
tion band in the wavelengths 210–320  nm. Another 
one is an unknown matter that shows the maximum 
absorption around 400  nm (Esposito et  al. 1997; Pol-
lack et al. 1980). Therefore, in contrast to the featureless 

visible-wavelength Venus images, the UV images present 
unique cloud morphologies, including the well-known 
“Yfeature,” which is even observable from ground-based 
stations (Dollfus 1975). The Venus UV image observa-
tions have about 90 years of history starting from the first 
ground-based observations (Wright 1927; Ross 1928) to 
the Hubble space telescope (Na and Esposito 1995); sev-
eral spacecraft observations were performed using flyby 
opportunities [Mariner 10 (Murray et  al. 1974), Galileo 
(Belton et  al. 1991) and Messenger], and using Venus 
orbiters [Venera (Ksanfomaliti et al. 1978), Pioneer Venus 
(Travis et al. 1979; Pollack et al. 1979; Stewart et al. 1979), 
and Venus Express (Markiewicz et  al. 2007a, b; Titov 
et al. 2008, 2012)].

Venus orbiters can provide astonishing details of 
cloud features that cannot be resolved by ground-based 
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telescopes, such as polar vortexes, equatorial convective 
cells, and bright polar “hoods” (Rossow et al. 1980; Titov 
et  al. 2008, 2012). As a new generation Venus orbiter, 
Akatsuki (Nakamura et  al. 2007, 2011) was successfully 
inserted into the Venus orbit in December 2015 (Naka-
mura et  al. 2016), and the onboard ultraviolet imager 
(UVI) continues the Venus UV observations at 283 and 
365  nm. These images are used to investigate the dis-
tributions of the absorbers, such as SO2 and unknown 
materials in the Venus mesosphere. Other scientific tar-
gets are to derive wind vectors using cloud tracking tech-
niques (e.g., Limaye and Suomi 1981; Moissl et al. 2009; 
Ogohara et  al. 2012; Kouyama et  al. 2012; Khatuntsev 
et  al. 2013; Hueso et  al. 2015; Ikegawa and Horinouchi 
2016; Horinouchi et al. 2017a), and to retrieve the verti-
cal distribution of haze from limb observations.

The H2SO4 clouds (Esposito et  al. 1983, 1997) are 
formed by photochemical reactions of SO2 and H2O near 
the cloud top altitude. However, the process of SO2 trans-
port in the Venus atmosphere is not yet well understood. 
SO2 is abundant below the clouds, but it is unclear how 
SO2 is transported to the cloud top region (Ignatiev et al. 
2009), where the stratification is static and stable. Moreo-
ver, the unknown absorbers are responsible for consider-
able solar heating at the cloud top level (Crisp and Titov 
1997; Lee et  al. 2015). This heating results in thermal 
tides, which play an important role in momentum trans-
port, so could contribute to maintain strong zonal winds 
near the cloud top level (Takagi and Matsuda 2007; Leb-
onnois et al. 2016).

First cloud motion measurements on Venus were 
reported from ground-based images by Boyer (1965), 
Beebe et  al. (1973), and from first spacecraft observa-
tions from Mariner 10 flyby images by Suomi (1975), 
Suomi et  al. (1976), Sidi (1976), Limaye (1977), Limaye 
and Suomi (1981). Winds at the Venusian cloud top have 
been acquired from the cloud morphologies observed by 
the Orbiter Cloud Photo-polarimeter (OCPP) on board 
the Pioneer Venus Orbiter (Rossow et  al. 1990), Galileo 
(flyby) by Toigo et al. (1994), the Venus Monitoring Cam-
era (VMC) on board the Venus Express (Markiewicz et al. 
2007b) and other spacecraft missions. The flow is almost 
zonal and westward, i.e., in the same direction as Venus’ 
rotation. The wind is called “superrotation” because it 
is sixty times faster than the winds at ground level on 
Venus. The speed of the zonal westward wind increases 
with altitude and reaches ~  100  m/s (mean value) near 
the cloud top altitude (Khatuntsev et  al. 2013; Hueso 
et al. 2015). Several generation mechanisms of superrota-
tion have been proposed by many authors (Leovy 1973; 
Gierasch 1975; Rossow and Williams 1979; Hou and Far-
rell 1987: Gierasch et al. 1997; Takagi and Matsuda 2007), 
but the mechanism is still unclear because we do not 

have enough data on the three-dimensional wind distri-
bution. The coupling among waves, cloud processes and 
global-scale winds is also important to understand the 
dynamics of the Venusian atmosphere.

The research goals for UVI data are: (1) large-scale 
(1000–40,000 km) to mesoscale (1–1000 km) cloud mor-
phologies, (2) three-dimensional haze distribution, (3) 
interactions between the lower and the middle atmos-
phere, (4) generation, propagation and dissipation of 
planetary waves and gravity waves, and their interaction 
with general circulation, (5) generation of superrotation, 
(6) distribution of unidentified ultraviolet absorbers, (7) 
distribution of SO2 and the photochemical processes 
related to H2SO4 formation, and (8) cloud aerosol micro-
physical properties.

In this study, we describe the characteristics of UVI, 
calibration process using ground and onboard measured 
data, and observation performance and strategy. We 
show example Venus images taken by UVI, and retrieved 
wind vectors as a product of the UVI data.

Instrumentation and observation
Instrumental design
The UVI instrument consists of two parts: a sensor (UVI-
S) and an analog electronics unit (UVI-AE) (Fig. 1). The 
UVI-S consists of band pass filters (installed in a fil-
ter wheel turret), off-axial catadioptric optics, and a 
charge-coupled device (CCD) detector with a preampli-
fier circuit. The instrument layout is shown in Fig. 2. The 
UVI-AE includes a power supply unit and control and 
readout circuits of the CCD detector. The electric power 
consumption is 19 W in the observation mode and 34 W 
at the filter wheel rotation. The UVI characteristics are 
shown in Table 1.

The UVI-S has an off-axial catadioptric optics that con-
sists of two lenses and two reflecting surfaces. The optics 
has a composite focal length of 63.3 mm and an f-number 
of 16. The 12° × 12° field-of-view (FOV) can capture the 
whole Venus disk during 97% of one rotation, except over 
~ 8 h near a periapsis. The size of the point spread func-
tion of the optics is designed to be smaller than 2 pixels 
of CCD. The filter wheel has four positions. Two interfer-
ence band pass filters and one diffuser are installed in the 
filter wheel. The last position is used as a shutter to meas-
ure noise level. The interference filters select the obser-
vational wavelengths of 283 and 365 nm with a bandpass 
width of 14 nm. The wavelength of 283 nm is located in 
the middle of the strong absorption band of SO2 (Stew-
art et al. 1979). The wavelength of 365 nm is in the broad 
absorption of the unknown UV absorbers, whose strong 
contrasts enable us to track the cloud morphology easily, 
as previous Venus orbiter observations had reported. The 
diffuser is used for the onboard flat field calibration, such 
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as the measurement of the correction of relative sensitiv-
ity between pixels. The shutter position is used to obtain 
the noise counts. The wheel positions are controlled by a 
step motor and two Hall effect sensors to determine the 
wheel rotation angle; they are also used to automatically 
return the wheel to the shutter position.

UVI-S is a full-frame back-illuminated sensor with a 
UV sensitive coating, a pixel size of 13 μm, and an imag-
ing area of 1024 ×  1024  pixels. The angular resolution 
is 0.012°, which corresponds to spatial resolutions of 
~ 200 m and ~ 76 km on the cloud top level in the obser-
vations from the altitudes of ~ 1000 km at the periapsis 

and ~ 60 RV (the radius of Venus) at the apoapsis, respec-
tively. The readout signal of the CCD is 12 bits. The data 
processing at the Digital Electronics (DE) equipment for 
the imaging sensors on Akatsuki, such as median filter-
ing, subtraction of dark current, and desmearing, is 
performed after converting the original 12  bits data to 
16 bits data. The image is compressed to reduce the size 
from 2 MB (megabyte) to several hundred KB (kilobyte) 
using an onboard application program. The compression 
algorithm is a lossless method and is called “HIREW” 
(Takada et al. 2007).

Observations and onboard data processing
The exposure time of UVI can be selected by a single 
command from 0.004  s to 11  s with 24 steps. The cho-
sen Venus image exposure time is 0.25  s before June 5, 
2016 and/or 0.50  s after June 6, 2016 for 283 nm, while 
the exposure time is 0.046 s for 365 nm from December 
7, 2015. The CCD detector with no electrical cooler sys-
tem is thermally in contact with a cooling radiator on the 
outside panel of the spacecraft body to reduce the dark 
current. The radiator has sufficient area to cool the CCD 
to less than 9 °C in the observation mode. The signal-to-
noise ratio of raw images exceeds 10 at this temperature 
before image data processing.

The CCD has no mechanical shutter; thus smear noise 
in the transfer from the image area to the storage area 
on the chip degrades the signal-to-noise ratio of the 

Fig. 1  Photographs of UVI-S (left) and UVI-AE (right). The radiator for the CCD cooling is hiding under the baseplate of the instrument in the left 
panel

Fig. 2  Schematic layout of UVI
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obtained image, especially in the case of short exposure. 
In the nominal operation of UVI, 18 images (6 Venus 
and 12 shutter images) are used for smear correction for 
each wavelength for the onboard data processing at the 
DE equipment. A set of three images taken in the same 
condition yields one median image. Letting T be the 

chosen exposure time, the breakdown of 18 images is as 
follows: a set of 0-s exposure shutter images and a set of 
T-s exposure shutter images before Venus shots; a set of 
0-s Venus images and a set of T-s Venus images; and a 
set of 0-s shutter images and a set of T-s shutter images 
after Venus shots. The Venus and shutter images with 
the same exposure time are used to remove noise. The 
image with 0-s exposure is subtracted from the image 
with the chosen exposure time; this procedure is called 
desmearing. As a result of data processing, the signal-to-
noise ratio of the UVI image improves to over 100. The 
above onboard processing is done in the portion of the 
orbit where Venus moves slowly as seen from Akatsuki. 
The Akatsuki orbit is around the equatorial plane similar 
to the one of Pioneer Venus (Nakamura et al. 2016). UVI 
can provide a symmetric view of both hemispheres but 
no polar view of the planet.

When the spacecraft is close to the planet and mov-
ing fast in the percenter, the method of smear correction 
cannot be performed effectively. In this case, the count 
in an optical black area of CCD, which is permanently 
masked outside the imaging area, is used to make the 
smear correction on the ground.

Calibration results
Performance measured before the launch
The transmittances of two interference filters and one 
diffuser installed in the filter wheel were measured 
before the launch (Fig.  3a, b). The measurement errors 
are within the size of symbols in the figures. Both filters 
have the effective bandwidth of 14 nm, and the transmit-
tance of ~ 60% for 365 nm and ~ 30% for 283 nm. The 
diffuser has a broad bandpass of 90  nm spanning these 
two observational wavelengths with the transmittance of 
a few percent.

The CCD detector adopted for UVI has a UV coating 
to enhance its quantum efficiency by up to 70% in the 

Table 1  Characteristics of UVI

Observation target Solar radiation scattered at cloud top

Optics design Camera with off-axial catadioptric optics

Observational wavelength 283 and 365 nm

Field-of-view 12°

FOV per pixel 0.20 mrads

Spatial resolution ~ 200 m (periapsis)–76 km (60Rv)

Optics

F-number 16

Focal length 63.3 mm

Aperture size 39.89 mm (hood entrance)

Bandpass widths of the filters 14 nm

Detector

CCD SiCCD (back-illuminated and full-frame 
transfer)

Pixel number 1024 × 1024 pixels

CCD control

Exposure time 4 ms–11 s

Data depth 12 bit

Weight (kg)

UVI-S 2.9

UVI-AE 1.2

Size

UVI-S 199 mm × 206 mm × 376 mm

UVI-AE 220 mm × 220 mm × 50 mm

Power (W)

Stand-by mode 17

FW movement mode 34

Observation mode 19

a b

Fig. 3  a Transmittance of the interference filters for the 365- and 283-nm channels (circles and triangles) and b transmittance of diffuser
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observational wavelength range and has a saturation level 
of 120,000 electrons per pixel. It is one of the full-frame 
transfer types and has three areas: the image area, stor-
age area, and optical black area. The digital counts of the 
first two areas are used for data processing at DE, and the 
counts of the last area are used for smear correction at 
the ground data processing.

The noise count of the CCD detector through the read-
out electronics tends to increase rapidly with tempera-
ture at the CCD temperature over −  10  °C and is less 
than 150 counts at a temperature below a few degrees 
(Fig. 4), achieved by cooling with the radiator under the 
normal observation mode. The nominal exposure time 
for the Venus observation is determined as the time 
where the signal level becomes half the saturation level 
of the CCD device. The signal-to-noise ratio is over 10 for 
the raw image before noise reduction and over 100 after 
the onboard smear correction at the normal observation.

The flat field image, the distortion image, and the spa-
tial frequency response (SFR) were used to evaluate 
the total optical performance of UVI-S. The image of 
a surface light source at the wavelength of 365  nm was 
obtained using the integrating sphere at the optical facil-
ity in the Earth Observation Research Center (EORC) at 
JAXA. The system is calibrated with the nonuniformity of 
the area light source of less than 1%. The raw image with-
out any optical correction, such as the cosine fourth law 
correction due to vignetting, is shown in Fig. 5. The count 
rate derives the sensitivity of UVI throughout the filter, 
optical lens, and the CCD detector before the launch. 
Figure  5 shows that the angular diameter of the inte-
grating sphere aperture viewed from UVI is a 12° circle 
and that the FOV of UVI is a 12° square. The count rate 
directed to the center area of the integrating sphere aper-
ture correctly derives the UVI’s total sensitivity. There-
fore, the direction of the UVI field-of-view was changed 
to 3 × 3 directions to obtain the images of the integrat-
ing sphere, and the sensitivity of nine areas of the UVI 

field-of-view was independently calibrated. The averaged 
image created from the nine images derived the sensitiv-
ity of the whole field-of-view.

The flat field pattern was also obtained as Venus 
images taken by using the diffuser in the orbit around 
Venus. The diffuser images of Venus are used to create 
the calibration flat pattern for the data processing on 
the ground. The UVI image data released from DARTS 
(Data Archives and Transmission System) of ISAS are 
corrected by the flat pattern and did not have the clear 
nonuniformity caused by the sensitivity difference of the 
CCD detector pixel by pixel. However, the flat pattern 
is not a perfect correction for photometry analysis that 
requires careful treatment of the brightness because the 
brightness gradient of one image remains due to vignet-
ting. Therefore, a factor (a flat conversion factor), based 
on the pixel sensitivity estimated from the calibration 
results using the integrating sphere before the launch, 
is also prepared at DARTS. It is recommended that the 
released image dataset is mainly used for morphology 
analysis and that the flat conversion factors are used 
for photometry studies. The product of the conversion 
factors and the released data for morphology analysis 
serves as the absolutely calibrated brightness for pho-
tometry analysis.

The distortion was measured by using black-light 
lamps with two different sizes of rectangle masks. One 
pattern has three 3.6-cm and one 10-cm wide masks. 
Four patterns are set up at one time at a 20.2-m distance 
from UVI-S with a 36-cm interval. UVI-S is mounted on 
a tilt-and-swivel base to change its line-of-sight direction 
to 39 positions (3 elevation angles × 13 azimuth angles). 
Thirty-nine images are superimposed to create one image 

Fig. 4  Temperature dependence of the CCD dark counts through the 
readout electronics

Fig. 5  Raw flat image of the integrating sphere using the diffuser 
with no correction
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shown in Fig. 6. The image reveals that the distortion is 
− 0.3% at the direction of 5.7° away from the optical axis.

Several images of a test chart were taken to estimate 
the index of the optical performance, SFR (Fig. 7). SFR is 
measured as a function of the chart pattern frequency of 
the line width per picture height (LW/PH) and indicates 
that the limiting resolution of UVI is 650 LW/PH with an 
SFR of 5%.

Variation of total sensitivity estimated from the onboard 
calibration
The total sensitivity of UVI is obtained from the results 
of the ground experiments before the launch. The values 
of the 283- and 365-nm channels, which convert pixel 
count rate to radiance, are 9227 and 5020 [W/m2/sr/m/

count rate], respectively. The onboard calibration is per-
formed based on the star observations after the launch. 
Star fields of Sagittarius and Scorpius were measured 
during cruising (Oct. 2010; before Venus orbit insertion) 
and in orbit (Feb. and Sep. 2016). The observed star flux 
is compared to a known value, so a calibration factor (β) 
can be derived as

where Fobs is the observed star flux by UVI and Fexp is the 
known star flux. Fexp is calculated as

where λ is wavelength, T is the transmittance profile of 
the 365 nm filter, and Fstar is a star flux spectrum, taken 
from Pulkovo Spectrophotometric Catalog (Alekseeva 
et al. 1996; the data are downloaded from http://cdsarc.u-
strasbg.fr). The estimation of the calibration factor for 
the 365-nm channel is shown in Fig. 8.

The observed radiance (W/m2/sr/μm) of stars is con-
verted to flux (W/m2/μm) by multiplying it with a solid 
angle of one pixel, Ωpix =  (0.00021)2 square radian. The 
star flux Fobs is calculated using the aperture photometry 
technique, widely used in star flux calculations for ground-
based observations (Mighell 1999; Laher et al. 2012). The 
283-nm channel is also measured by the same method 
using data from the International Ultraviolet Explorer 
(IUE). Table 2 shows the summary of the measured cali-
bration factor β for both of 365- and 283-nm channels.

Initial results
Operation in the Venus orbit
UVI is activated by executing the observation programs 
on the DE equipment, and is nominally performed every 
2  h; higher observation frequencies are inhibited to 
maintain the thermal condition of the instrument. UVI 
images taken so far cover scattering phase angles from 0° 
to 130°. The scattering property as a function of the phase 
angle is reported by Lee et  al. (2017). The observation 
programs enable us to perform collaborative observa-
tions with the Longwave Infrared Camera (LIR) (Taguchi 
et al. 2007; Fukuhara et al. 2011, 2017), the 1 μm camera 
(IR1) (Iwagami et  al. 2011, 2018) and the 2  μm camera 
(IR2) (Satoh et al. 2016, 2017). Some special observations 
of two UVI shots with short time interval (minimum of 
10  min) can be performed around the periapsis. Quasi-
simultaneous observations with the radio occultation 
experiment (Radio Science) (Imamura et al. 2011, 2017) 
and the Lightning and Airglow Camera (LAC) (Takahashi 
et al. 2008) are also performed during radio occultations 
and eclipses.

β =

Fexp

Fobs
,

Fexp =

∫
T (�)Fstar(�)d�∫

T (�)d�
,

Fig. 6  Measured distortion pattern of UVI

Fig. 7  SFR of the UVI imager

http://cdsarc.u-strasbg.fr
http://cdsarc.u-strasbg.fr
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Initial Venus images
UVI sample images of 283- and 365-nm wavelength are 
displayed in Fig.  9a, b. The images are taken at 17:14, 
and 17:17 UTC on April 25, 2016, with exposure times 
of 0.046 and 0.25 s, at distances of 84,761 and 84,267 km 
between Venus and Akatsuki, respectively. The local time 
and the latitude at the sub-spacecraft point are 10.5 LT 
and 2.8°, respectively. The north direction on Venus is at 
the top of the images. However, the detailed features are 
quite different from each other. The radiance of a 365-
nm image is about ten times larger than that of a 283-
nm image. The 365-nm image shows more contrast and 
bright area in the equatorial region near the center of the 
image. These differences in UVI images suggest that the 
spatial distributions of SO2 and unknown UV absorbers 
are governed by, at least partly, different chemical and/
or dynamical processes. Another pair of 283- and 365-
nm images in low latitude region is shown in Fig. 9c, d, 
respectively, which are taken at 21:01, and 21:04 UTC on 
27 February in 2017. The distance from Venus center is 
42,052 and 42,572 km, and the local time and the latitude 
at the sub-spacecraft are 15.0 LT and −  20.4°, respec-
tively. The significant feature is that there are a large dark 
area in 283-nm image and a fine cloud complex in 365-
nm image. The examples of cloud tracking results are 
described by Horinouchi et al. (2018), and Limaye et al. 

(2018) display the simultaneous images with UVI and 
other cameras.

Cloud tracking
UVI images are used to estimate the horizontal winds 
by tracking cloud features. An example derived from 
the three 365-nm images taken at 17, 20, 22  h UTC on 
December 7, 2015, the day of Akatsuki’s orbital inser-
tion, is shown in Fig.  10. The tracking is based on the 
automated method described in Ikegawa and Horinouchi 
(2016) and Horinouchi et  al. (2017a). The method is 
based on the template matching, but unlike in earlier 
studies (Kouyama et al. 2012), it utilizes image combina-
tions from more than two images. We utilized a measure 
of precision based on the sharpness of the cross-correla-
tion surfaces (Ikegawa and Horinouchi 2016), so that the 
results can be shown in the figures only when the esti-
mated precision is better (smaller) than 10  m/s; a com-
plete description of their derivation is available in the 
online supplement of Horinouchi et al. (2017b). In equa-
torial latitudes, the zonal wind exhibits the superrotation 
at around 100 m/s. The spatial distribution of horizontal 
winds is consistent with the divergent tidal flow as shown 
in earlier studies (Del Genio and Rossow 1990); the sub-
solar longitude at observation time was 143°; thus, winds 
vectors in the local afternoon are obtained.

Summary
Ultraviolet imager (UVI) on Akatsuki has success-
fully started Venus observations. The imager nominally 
takes a pair of UV images at 283-nm, which is sensitive 
to SO2, and 365-nm, which is in the absorption band 
of an unknown material, every 2  h by executing the 

Fig. 8  Time variation of calibration factor for the 365-nm channel

Table 2  Calibration factor β at 365 and 283 nm (avg.)

Date 8 Oct. 2010 8 Feb. 2016 8-9 Sep. 2016

¯β (365 nm) 1.63 ± 0.078 1.49 ± 0.24 1.58 ± 0.19

¯β (283 nm) – – 1.94 ± 0.16
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observation programs of the DE application. The spatial 
resolution is 200  m in the observation from the peri-
apsis of ~ 1000 km altitude, while it is ~ 76 km from the 
apoapsis of ~ 60 Rv altitude. After the onboard process-
ing, including dark count subtraction, median filtering 
and desmearing at DE, the signal-to-noise ratio of UVI 
images reaches over 100, which satisfies the scientific 
requirement. Correction for the pixel-to-pixel inhomo-
geneity of the detector sensitivity is made on the ground. 
The imager has been kept under good temperature con-
ditions during the 5 years of the cruise and does not show 
any signs of significant degradation.

The images obtained so far show similarities and dif-
ferences between the two wavelengths. Comparison of 
the images would provide clues to the three-dimensional 
distributions of UV absorbers and clouds as well as cloud 
morphologies. Cloud tracking using sequential images 
reveals the circulation structure in the cloud top region. 
The scattering properties at the cloud top altitude in 
the UV range, such as the phase angle dependence, can 
be analyzed to reveal the microphysical parameters of 
cloud particles and constrain the vertical distributions of 
SO2 and unknown absorbers (Lee et  al. 2017). UVI has 
the potential to reveal photochemical and dynamical 

Fig. 9  Examples of UVI 283-nm images (a, c) and 365-nm images (b, d)
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processes that play crucial roles in the formation of 
H2SO4 clouds. UVI data, combined with data from other 
onboard instruments, are also used for the investigation 
of the generation mechanism of superrotation.
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Fig. 10  Horizontal velocities derived from three 365-nm images on 
the day of Akatsuki’s Venus orbit insertion (7 December 2015). Arrows 
show their deviation from the uniform westward wind of 95 m/s. 
The length scale of the arrows is shown in m/s near the lower-right 
corner. Grayscale shading shows the high-passed radiance (W/m2/
sr/m) at the beginning of cloud tracking
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