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Curie.

Open Access doi:10.1007/JHEP11(2011)046

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81774318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:adel.bilal@lpt.ens.fr
http://arxiv.org/abs/1103.2280
http://dx.doi.org/10.1007/JHEP11(2011)046


J
H
E
P
1
1
(
2
0
1
1
)
0
4
6

Contents

1 Introduction and summary 2

2 Susy invariance of the sigma-model bulk plus boundary action 5
2.1 Conventions and bulk superspace 5
2.2 Boundary superspace and boundary supersymmetry 6
2.3 The standard bulk action 8
2.4 Boundary terms from the susy variation of the bulk action S(2) 9
2.5 Adding an appropriate boundary action Ŝ 10
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1 Introduction and summary

There are many motivations to study field theories and in particular supersymmetric the-
ories on spaces with boundaries in various dimensions. In low dimensions, much work
was done on two-dimensional sigma-models [1–3] where the study of boundary conditions
which preserve half of the supersymmetry is relevant for D-branes [4, 5]. The 3-dimensional
case has been studied in the context of membranes with boundaries [6, 7]. Much of the
interest in higher-dimensional space-times with boundaries was initiated by the Horava-
Witten construction of the heterotic string [8, 9] where maintaining half of the d = 11
supersymmetry is crucial, among other things, in order to correctly identify the anomaly-
cancelling boundary contributions to the Bianchi identity, see e.g. [10, 11]. The reduction
of the Horava-Witten theory on a Calabi-Yau manifold, as well as more general brane-
world constructions in d = 5 dimensions, have been extensively discussed (for a partial
list of references see [12–22]). An early general study of susy with boundaries in various
dimensions appeared in [23], and many interesting results on the quantization of Euclidean
gravity and supergravity with boundaries are collected in [24–27]. The four-dimensional
case has been analyzed in the context of defect conformal field theories [28–30], which are
dual to AdSn branes living in a AdSn+1 bulk [31–33].

Here, we will be exclusively interested in four-dimensional supersymmetric theories
with boundaries which, somewhat surprisingly, seem to have been studied to a lesser extent.
Four-dimensional supergravity on space-times with boundaries is discussed in [34, 35], and
a very nice study of boundary terms and boundary conditions in rigid 3 and 4 dimensional
supersymmetry is given in [36]. One of the main points there is that one has to add
appropriate boundary terms to the bulk action in order to correctly maintain half of the
susy off-shell. This will also be the attitude taken in the present paper. We should also note
that boundary conditions in N = 4 super Yang-Mills theory have been considered in detail
in [37]. Nevertheless, a systematic analysis of the effect of boundaries in the general N = 1
sigma-model in 3 + 1 dimensions with arbitrary Kähler potentials and superpotentials is,
to the best of our knowledge, still lacking. Providing such an analysis is the aim of the
present work. One of our goals is to determine all consistent, supersymmetric, generally
non-linear boundary conditions. As an application, this will allow us to study the possible
couplings of different sigma-models on adjacent domains through permeable walls.

Beyond the intrinsic interest in such non-linear sigma models with boundaries and
junctions, their study is motivated by their possible realization as low-energy effective
theories that result from “integrating out a domain wall”. More precisely, consider a
theory with several superfields and a superpotential such that a heavy superfield admits a
domain wall solution. Then integrating out the fluctuations of the heavy superfield around
this domain wall solution should lead to an effective theory for the light superfields which,
generically, have different effective superpotentials and effective Kähler potentials on the
two space-time domains that were separated by the domain wall. Probably the simplest
example of such a scenario is provided by the simple Wess-Zumino model consisting of a
heavy chiral superfield ΦH and a light one Φ with a superpotential

W (ΦH,Φ) = γ(Φ3
H/3−M2ΦH) + ΦHw2(Φ) + w1(Φ) , (1.1)

– 2 –
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with w′1(0) = w2(0) = w′2(0) = 0. Concentrating on the heavy field alone, there are
two susy preserving vacua with the scalar component being zH = ±M , but there also is
an interpolating domain wall solution zH(xn) = M tanh(γMxn), preserving half of the
supersymmetry. In the limit of a thin wall with infinite tension (finite M and γ → ∞)
we then expect the effective superpotentials for the light field in each of the two domains
xn > 0 and xn < 0 to be different, namely

w±eff(Φ) ' w1(Φ)±Mw2(Φ) , (1.2)

up to an irrelevant additive constant. Using the usual holomorphicity and R-charge argu-
ments, one can show that this result most probably remains true in the full quantum theory
(see appendix B). In the present paper, however, we will not develop this idea further but
instead adopt a purely “effective action approach”. Note that this is different from the
discussion in [38] where the three-dimensional low-energy effective action on a domain wall
was studied.

In most of this paper, we will consider N = 1 (rigid) supersymmetric sigma-models
with arbitrary Kähler potentials K(Φi, Φ̄i) and superpotentials w(Φi) for N chiral super-
fields fields Φi on a domain M of 3 + 1 dimensional space-time with a (flat) space-like
boundary ∂M. Once we have classified all possible supersymmetric boundary conditions,
it is then a straightforward extension to discuss the junction of two different theories living
on adjacent domains and interacting through a common boundary. Of course, the presence
of the boundary breaks the super Poincaré algebra, with its 4 supersymmetries, to a 2 + 1
dimensional one, with 2 supersymmetries. Supersymmetric boundary conditions are such
that these two supersymmetries are preserved.

In section 2, we set up the basic formalism. This section follows in spirit the analysis
of [36]. After quickly reviewing our conventions for two-component spinors and the usual
3 + 1 dimensional superspace, we identify the relevant boundary superspace and the gen-
erators of the two supersymmetries which remain unbroken by the boundary. Essentially,
this corresponds to imposing some reality condition on the supersymmetry parameters ε.
We will review how, on the boundary, each bulk chiral superfield Φi reduces to a boundary
superfield φi that consists of two irreducible boundary superfields (essentially its real and
imaginary part). As is well known, the standard susy Lagrangians are not invariant under
susy but pick up a total derivative which, in the present context, gives rise to bound-
ary terms. As in [36], we will determine the appropriate minimal (non-supersymmetric)
boundary action that has to be added to the standard non-linear sigma model bulk action
such that the sum is invariant precisely under the two supersymmetries compatible with
the existence of the boundary.1 Note that this is achieved without imposing any boundary
conditions on the fields. (That this can be done was a main point of [36]). This “minimal”
action S is still entirely determined in terms of the Kähler potential K and the superpo-
tential w. To this minimal action one can further add any susy invariant boundary action
of the form

SB =
∫

d3x

∫
d2θ B(φi, φ̄i) (1.3)

1Henceforth, by “supersymmetric” we will always mean with respect to the two supersymmetries pre-

served by the boundary.
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with real “boundary potential” B. Thus the non-linear sigma-model on a manifold with
boundary is characterised by the tripel (K,B,w).

Section 3 contains the main results of this paper. There, we will study the possible
supersymmetric boundary conditions on the fields that lead to a well-defined dynamics.
Indeed, boundary conditions on the fields should follow from a variational principle: as is
well known, in order to obtain the Euler-Lagrange field equations by varying some general
action, one has to perform certain partial integrations which generate (further) bound-
ary terms. Boundary conditions must be such that the variation of all boundary terms
vanishes. If one adds an additional boundary action its variation generates an additional
boundary term, and thus modifies the resulting boundary conditions. Similarly, if we vary
our supersymmetric action S + SB, we will find the usual field equations in the bulk, as
well as certain boundary terms. The vanishing of the latter can be expressed as algebraic
conditions on the boundary superfields φi and φ̄i which translate into appropriate Dirichlet
and Neumann conditions on the component fields, providing exactly the right amount of
boundary conditions. The latter obviously depend on the real function B. We will argue
that the form (1.3) for SB is the most general boundary term we may add. In particu-
lar, terms involving (super)derivatives of the boundary superfield would lead to boundary
conditions on the component fields with too many derivatives. Any admissible boundary
condition then must relate φi and φ̄i and can be solved, at least locally, as φ̄i = Gi(φj).

We will show that these boundary conditions, i.e. the functions Gi are determined
as solutions to a set of N first-order, partial, generally non-linear differential equations
involving B and the first derivatives of K. Conversely, provided a certain integrability
condition (relating the Kähler metric and the first derivatives of the Gi) is satisfied, we
prove that one can obtain a suitable real function B for any supersymmetric boundary
condition. Since the whole discussion of boundary conditions is formulated entirely in terms
of functions of the boundary superfields, invariance under the (boundary) susy algebra is
manifest. Note that the superpotential does not enter the discussion of boundary conditions
and, hence, it is completely unconstrained by any of the considerations in this paper.

As an example, for a single superfield with canonical Kähler potential, the function
G determining the (algebraic) boundary condition φ̄ = G(φ) would be obtained as a so-
lution of the ordinary differential equation: d

dz B
(
z,G(z)

)
= i

2

(
G(z) − z G′(z)

)
. We will

explicitly work out several non-trivial examples of functions B and boundary conditions G
they determine, and vice versa, including boundary conditions like φ̄ = e2iH(φ φ̄)φ with an
arbitrary real function H(x), or (φ̄)2 + φ2 = 1, or even φ̄ = γ/φ.

The supersymmetric sigma-model allows for arbitrary holomorphic field redefinitions
Φ̃i = f i(Φj). It becomes inevitable to discuss such holomorphic field redefinitions once
one considers general scalar manifolds that are Kähler manifolds with non-trivial holomor-
phic transition functions (like CPN ). Our whole discussion of supersymmetric boundary
conditions is formulated covariantly with respect to such holomorphic field redefinitions.
Actually, we will show that there is always a holomorphic field redefinition such that, in
terms of the new fields, the boundary conditions simply become φ̃i = φ̃i, but this might be
at the price of having a complicated Kähler potential (and superpotential). This suggests
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that the boundary conditions can always be understood as defining a real submanifold of
the Kähler manifold. We will show indeed that the above-mentioned integrability condi-
tion is exactly the statement that the submanifold z̄i = Gi(zj) is a Lagrangian submanifold.
This is, of course, analogous to the well-known result in two dimensions that the bound-
aries of the world-sheet must be mapped to (special) Lagrangian submanifolds of the target
manifold.

Consistent boundary conditions should also ensure that the total energy as well as the
components of the total momentum tangential to the boundary are conserved. We will
verify that this is indeed the case with our boundary conditions, provided the total energy
includes an appropriate boundary contribution that we identify. We end this section 3 by
showing that one can rather trivially include couplings to additional superfields that only
live on the boundary.

In section 4, we apply our results to the study of supersymmetric junctions between
different sigma models living on adjacent domains and interacting through a common
“permeable boundary wall”: the possible boundary conditions now can mix the boundary
superfields of the two sigma models: they become “matching” conditions. By a folding
precedure this situation can be mapped to one with all fields defined on a single domain
with a boundary as discussed so far. However, it turns out that a direct analysis is just as
simple. Again, the matching conditions are determined as solutions of a set of partial non-
linear differential equations involving the boundary action SB and the first derivatives of the
Kähler potentials on both sides of the wall. No condition is imposed on the superpotentials.
Again, we give some explicit examples of how to match models with different Kähler
potentials (and superpotentials) in a supersymmetric way.

In appendix A, we collect a few useful formulae and identities for two-component
spinors and superfields. Finally, in appendix B, we give some details on the above-
mentioned example of how to realize an effective theory having a wall with two different
superpotentials on each side, by integrating out a heavy superfield around its domain wall
solution.

2 Susy invariance of the sigma-model bulk plus boundary action

In this section we will first identify the relevant boundary superspace, boundary super-
symmetry and boundary superfields. Then we identify the appropriate boundary action
to be added to the usual bulk action of the non-linear sigma-model in order to achieve
invariance under the two supersymmetries that remain unbroken by the boundary. We
will not impose any boundary conditions. As already mentioned, this section is similar in
spirit to ref. [36], and many of the results of this section are more or less straightforward
generalizations of those to be found in this reference.

2.1 Conventions and bulk superspace

Our conventions are the same as in ref [39, 40] which mostly follow [41]. We work in four-
dimensional Minkowski space with signature (+ − −−). We use two-component spinors
ψα, α = 1, 2. The complex conjugate spinor is denoted with dotted indices: ψ̄α̇ ≡ (ψα)∗.

– 5 –
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Indices are raised and lowered according to (A.1) of appendix A, where also the 2 × 2-
matrices σµ and σ̄µ are defined and various useful identities between spinor bilinears are
given.

The 3+1 superspace has coordinates xµ, as well as an anticommuting (constant) spinor
θα and its conjugate θ̄α̇. We normalize their integrals as

∫
d2θ θθ =

∫
d2θ̄ θ̄θ̄ = 1. We will

be mainly interested in chiral superfields Φ that obey Dα̇Φ = 0 (cf. appendix A) and are
functions of yµ = xµ + iθσµθ̄ and θ only:

Φ(y, θ) = z(y) +
√

2 θψ(y)− θθf(y)

= z(x) +
√

2 θψ + iθσµθ̄ ∂µz − θθf −
i√
2
θθ ∂µψσ

µθ̄ − 1
4
θθ θ̄θ̄ ∂2z , (2.1)

where the arguments in the second line are x rather than y. Here and in a more general
chiral superfield like w(Φ) the coefficient of θθ is referred to as the F -term. Similarly, for a
general superfield like (A.8), the coefficient of 1

2 θθθ̄θ̄ plus 1
2 ∂µ∂

µ of the lowest component
(the one without θ and θ̄) is referred to as the D-term.

The supersymmetry variation of an arbitrary superfield S reads

δS ≡
(
iεQ+ iε̄Q

)
S , Qα = −i ∂

∂θα
− σµ

αβ̇
θ̄β̇

∂

∂xµ
, Qα̇ = i

∂

∂θ̄α̇
+ θβσµβα̇

∂

∂xµ
. (2.2)

The supersymmetry generators Q and Q satisfy of course

{Qα, Qβ̇} = 2σµ
αβ̇
Pµ , (2.3)

where Pµ = −i∂µ. For a chiral superfield, eq. (2.2) yields

δΦ =
∂

∂yµ
(2iθσµε̄Φ) +

∂

∂θα
(−εαΦ) , (2.4)

leading to the component transformations

δz =
√

2 εψ , δψ =
√

2 i ∂µz σµε̄−
√

2 fε , δf =
√

2 i ∂µψσµε̄ . (2.5)

δz̄ =
√

2 ε̄ψ̄ , δψ̄ = −
√

2 i ∂µz̄ εσµ −
√

2 f̄ ε̄ , δf̄ = −
√

2 i εσµ∂µψ̄ . (2.6)

2.2 Boundary superspace and boundary supersymmetry

As recalled in appendix A, under Lorentz transformations in 3+1 dimensions, ψ transforms
in the fundamental representation of SL(2,C) and ψ̄ transforms in the complex conjugate
representation which is different. It is obvious that one cannot impose any relation between
ψ and ψ̄ without violating the 3 + 1 dimensional Lorentz invariance.

We will be interested in space-times M with a flat space-like boundary ∂M, which
we take to be the (static) hyperplane xn = 0, n being 1, 2 or 3. Specifically, we let M be
such that xn ≤ 0 so that the outward normal vector of the boundary ∂M point towards
positive xn. We will often use an index µ̂ which runs over the three values of µ not being n.
Transformations that leave the boundary invariant correspond to the SL(2,R) subgroup
of SL(2,C). (This is most obvious from (A.4) if one chooses n = 2.) While the spinor ψ
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transforms irreducibly under SL(2,C), it contains 2 irreducible components with respect
to this SL(2,R) subgroup.

On a boundary2 at xn = 0, the 2 + 1 dimensional Lorentz group is generated by the
rotation around the normal vector (parameter αn) and the two boosts tangential to the
boundary (parameters νt, t = 1, 2, 3 and t 6= n). One easily shows from (A.4) that under
this subgroup σn

αβ̇
ψ̄β̇ transforms exactly as ψα. It is then consistent to eliminate half of

the spinor components by imposing a reality condition

ψα = −e−iϕ σn
αβ̇
ψ̄β̇ ⇔ ψ̄α̇ = eiϕ σ̄nα̇βψβ , (2.7)

where ϕ is an arbitrary phase. A spinor satisfying such a condition then transforms in an
irreducible representation of the SL(2,R) group left unbroken by the boundary at xn = 0.

Similarly, 2 + 1 dimensional superspace corresponding to a minimal supersymmetry
consists of the xµ̂ and a constant 2-component spinor θ obeying the reality constraint (2.7).
Here we will call this the boundary superspace B. For a single boundary, we can redefine
θ by an appropriate phase rotation to give ϕ any desired value. We will find it convenient
to fix it as

eiϕ = −1 , (2.8)

so that
B = {xµ, θ, θ̄ | xn = 0 , θ̄α̇ = −σ̄nα̇βθβ} . (2.9)

It will be useful to have at hand various equivalent ways to write the constraint on θ:

θ̄α̇ = −σ̄nα̇βθβ ⇔ θ̄α̇ = θβσnβα̇ ⇔ θα = σn
αβ̇
θ̄β̇ ⇔ θα = −θ̄β̇σ̄

nβ̇α (2.10)

We also note that this implies θσµθ̄ = δµn θθ. A boundary superfield φ̂ is a field defined on
B. It has the expansion

φ̂(xµ̂, θ) = ζ(xµ̂) +
√

2 θχ(xµ̂)− θθg(xµ̂) . (2.11)

In general, the component fields ξ, χ and g may be real or complex. These boundary
superfields are analogous to the co-dimension one multiplets of [36].

Since supersymmetry corresponds to translations in superspace, the boundary super-
symmetry must have parameters ε satisfying the same constaint as θ:

ε̄α̇ = −σ̄nα̇βεβ ⇔ ε̄α̇ = εβσnβα̇ ⇔ εα = σn
αβ̇
ε̄β̇ ⇔ εα = −ε̄β̇σ̄

nβ̇α. (2.12)

For any boundary superfield, the bulk supersymmetry then reduces to

δsusyφ̂ = i(εQ+ ε̄Q)φ̂ = i(εαQα + εβσnβα̇Q
α̇)φ̂ = iεαQ̃αφ̂ , (2.13)

with Q̃α = Qα + σn
αβ̇
Q
β̇ being the boundary supersymmetry generator. Explicitly, we find

Q̃α ≡ Qα + σn
αβ̇
Q
β̇= −i ∂

∂θα
+ 2 γ̂µ̂αβθ

β ∂

∂xµ̂
, with γ̂µ̂αβ = γ̂µ̂βα = −σµ̂αγ̇ε

γ̇δ̇σn
βδ̇
, (2.14)

2With the appropriate notational modifications, it is trivial to consider any static boundary ~n · ~x = 0,

instead.
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where the γ̂µ̂ obey the 2 + 1 dimensional Clifford algebra. It is not difficult to see that
these Q̃α then satisfy the 2 + 1 dimensional supersymmetry algebra {Q̃α, Q̃β} = 2γ̂µ̂αβ Pµ̂
as appropriate on the boundary.

We will be mainly interested in the boundary superfields obtained by restricting the
bulk (anti) chiral superfields Φ and Φ̄ ≡ Φ† to the boundary superspace B. Using θσµθ̄ =
δµn θθ, the restriction of yµ = xµ + iθσµθ̄ yields yµ̂|B = xµ̂ and yn|B = iθθ, so that one gets
(cf. (2.1)):

φ = Φ|B = z +
√

2 θψ − θθ(f − i∂nz) ,
φ̄ = Φ̄|B = z̄ +

√
2 θσnψ̄ − θθ(f̄ + i∂nz̄) , (2.15)

where it is understood that the component fields have arguments xµ̂, while xn = 0. Note
that φ̄ ≡ φ†. (These expressions correspond to eq. (3.12) of [36].) One can now apply (2.13)
on φ and on φ̄ to obtain the variations of the component fields under the boundary super-
symmetry (with ε satisfying (2.12)):

δz =
√

2 εψ , δz̄ =
√

2 εσnψ̄

δψ = −
√

2 i ∂µ̂zσµ̂σ̄nε−
√

2(f−i∂nz) ε , δψ̄ = −
√

2 i ∂µ̂z̄εσµ̂ −
√

2(f̄+i∂nz̄) εσn

δ(f−i∂nz) = −
√

2 i ∂µ̂ψσµ̂σ̄nε , δ(f̄+i∂nz̄) = −
√

2 i εσµ̂∂µ̂ψ̄ , (2.16)

which is consistent with the variations obtained directly from the bulk fields (2.5) and (2.6)
upon imposing (2.12) on the susy parameter ε.

Let us summarize: the boundary breaks the 3 + 1 Lorentz symmetry to a 2 + 1 di-
mensional one, and this identifies the two supersymmetries that may remain unbroken by
the boundary, cf. (2.13). This corresponds to imposing the reality constraint (2.12) on the
susy parameters ε. The unbroken supersymmetry is most conveniently described using the
boundary superspace B defined in (2.9). When restricted to B, every bulk chiral super-
field Φ gives rise to a boundary superfield φ. So far, we have not imposed any boundary
conditions on these fields (i.e. on their component fields). The question of boundary condi-
tions will only be considered later-on in the next section, but it is clear that any boundary
condition formulated in terms of the boundary superfields will automatically preserve the
unbroken supersymmetry (2.13).

We should note that the present discussion immediately generalizes to two parallel
boundaries, say at xn = −a and xn = 0. Since ε is a global parameter, the supersymmetry
preserved by both boundaries must be the same, the generators being given by (2.14). In
particular, the arbitrary phase ϕ must be chosen identically for both boundary superspaces.

2.3 The standard bulk action

We want to consider a general N = 1 susy non-linear sigma-model for N chiral fields Φi

and their hermitian conjugates Φ̄i. The standard bulk action can be written in terms of
(bulk) superspace integrals as

S
(1)
σ-model =

∫
M

d4x

(∫
d2θd2θ̄ K(Φi, Φ̄j)+

∫
d2θ w(Φi)+

∫
d2θ̄ w̄(Φ̄i)

)
≡ S(1)

K +S(1)
w +S

(1)
w̄ ,

(2.17)
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or alternatively as

S
(2)
σ-model =

∫
M

d4x

(
1
2
[
K(Φi, Φ̄j)

]
D

+
[
w(Φi)

]
F

+
[
w̄(Φ̄i)

]
F̄

)
≡ S(2)

K +S(2)
w +S(2)

w̄ . (2.18)

Here [. . .]D and [. . .]F refer to picking out theD-terms and F -terms (resp. F̄ -terms). K(z, z̄)
is the real Kähler potential: [K(zi, z̄j)]∗ = K(zi, z̄j) and w(zi) the holomorphic superpo-
tential. Expanding K and w and doing the superspace integrals, resp. picking out the D
and F terms, leads to the standard bulk action for the component fields which we will give
below. This involves various derivatives of the potentials, for which we use the standard
notation

Ki =
∂K(z, z̄)
∂zi

, Kj =
∂K(z, z̄)
∂z̄j

, Kj
i =

∂2K(z, z̄)
∂zi∂z̄j

, wi =
∂w(z)
∂zi

, wj =
∂w̄

∂z̄j
, etc. . .

(2.19)
They obey certain reality conditions, e.g.

(Ki
j)
∗ = Kj

i , (Ki
jk)
∗ = Kjk

i , (wj)∗ = wj . (2.20)

Both Lagrangians (2.17) and (2.18) only differ by a total derivative and, in the absence of
boundaries, lead to identical actions. Of course, in the presence of a boundary the actions
differ by a boundary term. Since later-on we will anyhow have to add a boundary term,
one might be tempted to start with either action. However, S(1)

w gives a boundary term
that still depends on θ̄ — which is clearly unwanted. Thus the correct action to begin with
is S(2). The component expansions are

1
2
[
K(Φi, Φ̄j)

]
D

= Kj
i

(
f if̄j + ∂µz

i∂µz̄j −
i

2
ψiσµ∂µψ̄j +

i

2
∂µψ

iσµψ̄j

)
+

1
2
Kk
ij

(
i ψiσµψ̄k∂µz

j + ψiψj f̄k
)

+ h.c. +
1
4
Kkl
ij ψ

iψjψ̄kψ̄l , (2.21)

and [
w(Φi)

]
F

= −wif i(x)− 1
2
wijψ

i(x)ψj(x) . (2.22)

2.4 Boundary terms from the susy variation of the bulk action S(2)

As recalled in (A.10) and (2.4), the susy variations of superfields are total derivatives in
superspace. Hence, ifM has no boundary, the bulk action S is invariant under supersym-
metry. At present, however, M has a boundary and δS will pick up boundary terms. To
begin with, we determine these boundary terms for an arbitrary supersymmetry transfor-
mation, i.e. with no restriction on the parameter ε.

First, consider the F -terms: it is easiest to look directly at the component expres-
sion (2.22) and use (2.5). One gets δ[w(Φi)]F = −i

√
2 ∂µ(wjψjσµε̄), where we used

wijk ψ
iψj εψk = 0. Hence

δS(2)
w = δ

∫
M

d4x
[
w(Φi)

]
F

= −i
√

2
∫
∂M

d3xwj ψ
jσnε̄ , (2.23)

and similarly (recall w∗j ≡ wj) δS
(2)
w̄ = −i

√
2
∫
∂Md3xwj ψ̄j σ̄

nε.
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To compute the susy variation of the D-term S
(2)
K is a bit more involved. After a

somewhat lengthy computation we find

δS
(2)
K =

1√
2

∫
∂M

d3x

{
i

(
Ki
jf
j+

1
2
Ki
jkψ

jψk
)
ψ̄iσ̄

nε+Kj
i ∂µz̄jψ

iσµσ̄nε

}
+ h.c. (2.24)

Finally, putting all the pieces together, we get the variation of the bulk action S under an
arbitrary supersymmetry with (unrestricted) parameter ε:

δS(2) =
1√
2

∫
∂M

d3x

{
i

(
Ki
jf
j+

1
2
Ki
jkψ

jψk−2wi
)
ψ̄iσ̄

nε+Ki
j∂µz̄iψ

jσµσ̄nε

}
+ h.c. (2.25)

Obviously, this variation of the bulk action is non-vanishing. As discussed above, in the
presence of a boundary, we can only hope to preserve half of the initial 3 + 1 dimensional
supersymmetry, as determined by (2.12). Imposing these conditions on ε (we write ε̄ = εσn)
and using the identities of appendix A, we can rewrite the variation (2.25) in the following
somewhat simpler form:

δS(2)
∣∣
ε̄=εσn

=
1√
2

∫
∂M

d3x

{
−Ki

j∂µz
j εσµψ̄i −Ki

j∂µz̄i ψ
jσµε̄+ 2i wi ε̄ψ̄i − 2i wi εψi

−i
(
Ki
jf
j+

1
2
Ki
jkψ

jψk
)
ε̄ψ̄i + i

(
Kj
i f̄j +

1
2
Kjk
i ψ̄jψ̄k

)
εψi
}∣∣∣∣

ε̄=εσn
. (2.26)

This is still non-vanishing. Note that, alternatively, this result could also have been inferred
from the formalism of ref. [36].

2.5 Adding an appropriate boundary action Ŝ

At this point we have two possibilities to recover invariance under the supersymmetry
restricted by ε̄ = εσn. Since (2.26) only involves the fields on the boundary, one could
try to impose boundary conditions on these fields. However, this turns out not to be
necessary. Instead, following [36], we use the freedom to add a boundary term to our
action, and try to find a “minimal”, 2 + 1-Poincaré invariant boundary action Ŝ such that
its susy variation (subject to ε̄ = εσn) precisely cancels (2.26). By “minimal” we mean that
it should only involve the fields, Kähler potential and superpotential (and their derivatives)
already present in S(2), and no additional fields or functions. Later-on we will also add
additional non-minimal boundary actions SB that are susy invariant by themselves and,
hence, can be written in terms of the boundary superfields. On the other hand, the non-
invariant action Ŝ cannot be written using the boundary superfields only, and we have to
find its expression in component fields.

To figure out the appropriate boundary action Ŝ we first concentrate on the term
in (2.26) that contains Ki

jkψ
jψk ε̄ψ̄i. Observe that, since each ψi has only two anticom-

muting components, we have Kjklψ
jψkψl = 0. Then one finds

1√
2
δ
(
Kjkψ

jψk
)

= K l
jkψ

jψk ε̄ψ̄l + 2Kjkψ
j
(
i∂µz

kσµε̄− fkε
)
. (2.27)

Furthermore,
1√
2
δ
(
Kjf

j
)

= Kjlf
j εψj +K l

jf
j ε̄ψ̄l + iKj∂µψ

jσµε̄ . (2.28)
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Combining both equations and using Kjk∂µz
k = ∂µKj − Ki

j∂µz̄i, as well as the complex
conjugate relations, one gets

δ

(
− i

2
Kjf

j− i

4
Kjkψ

jψk+
i

2
Kj f̄j +

i

4
Kjkψ̄jψ̄k − iw + iw̄

)
=

1√
2
∂µ
(
Kj ψ

jσµε̄+Kj εσµψ̄j
)
−Ki

j∂µz
j εσµψ̄i −Ki

j∂µz̄i ψ
jσµε̄

− i
(
Ki
jf
j+

1
2
Ki
jkψ

jψk
)
ε̄ψ̄i + i

(
Kj
i f̄j +

1
2
Kjk
i ψ̄jψ̄k

)
εψi− 2i wi εψi+ 2i wi ε̄ψ̄i .

(2.29)

Except for the first one, the terms on the right hand side are exactly what we need to
cancel the susy variation (2.26) of the bulk action. To deal with the first term, note
that the boundary itself does not have a boundary and hence, if we also restrict the susy
transformation parameter ε to obey (2.12) we get

1√
2

∫
∂M

d3x ∂µ
(
Kj ψ

jσµε̄+Kj εσµψ̄j
)∣∣
ε̄=εσn

=
1√
2

∫
∂M

d3x ∂n
(
Kj ψ

jσnε̄+Kj εσnψ̄j
)∣∣
ε̄=εσn

=
1√
2

∫
∂M

d3x ∂n
(
Kj ψ

jε+Kj ε̄ψ̄j
)

= δ

∫
∂M

d3x
1
2
∂nK . (2.30)

Combining everything, we finally find

δ
(
S(2) + Ŝ)

∣∣
ε̄=εσn

= 0 , (2.31)

with our (minimal) boundary action Ŝ being

Ŝ =
1
2

∫
∂M

d3x

{
∂nK + i

(
Kjf

j +
1
2
Kjkψ

jψk
)
− i
(
Kj f̄j +

1
2
Kjkψ̄jψ̄k

)
+ 2iw − 2iw̄

}
.

(2.32)
Note that this boundary action corresponds to the extended D and F term formula in
section 2.2 of [36]. For later reference, it can also be rewritten as

Ŝ = −
∫
∂M

d3x Im
{
Kj

(
f j − i∂nzj

)
+

1
2
Kjkψ

jψk + 2w
}
. (2.33)

Thus the correct action for the supersymmetric σ-model in the presence of a boundary is

S = S(2) + Ŝ , (2.34)

which is invariant under the two supersymmetries preserved by the boundary, i.e. with
ε̄ = εσn, without the need to impose any boundary conditions on the fields.

On the other hand, it is now also clear that if one had insisted not to add Ŝ, one would
have had to impose boundary conditions such that Ŝ vanishes. One sees from (2.33) that
such boundary condition would have to be such that Kj(f j − i∂nzj) + 1

2 Kjkψ
jψk + 2w

is real, i.e. typically (up to field redefinitions) zj real, f j − i∂nzj real, ψj satisfying the
same reality conditions as ε or θ, and appropriate reality conditions on Kj , Kjk and on
the superpotential w. We will find such boundary conditions on the fields as a special
case in the next section when studying the dynamics. However, we will not get any reality
condition on the superpotential.
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2.6 Additional susy invariant boundary actions SB

Instead of just adding the minimal Ŝ to the bulk action S(2), following again [36], one can
also add further boundary actions that are by themselves invariant under the supersym-
metries satisfying ε̄ = εσn. Such invariant boundary actions are easy to construct. Indeed,
as discussed in section 2.2, the boundary superspace integral of any function of boundary
superfields is invariant. Thus, we can add a boundary action

SB =
∫
∂M

d3x

∫
d2θ B

(
φl, φ̄k

)
, (2.35)

with an arbitrary real function B(zl, z̄k). More general invariant boundary actions could
also involve boundary superderivatives, as would be appropriate to describe new degrees of
freedom that have their own 2 + 1 dimensional propagator. To write the component form
of (2.35), we denote, in analogy with (2.19)

Bi =
∂B(zl, z̄k)

∂zi
, Bj =

∂B(zl, z̄k)
∂z̄j

, etc. (2.36)

Expanding (2.35) and using (2.15) then gives

SB = −
∫
∂M

d3x

[
Bj
(
f j− i∂nzj

)
+Bj

(
f̄j + i∂nz̄j

)
+Bj

iψ
iσnψ̄j +

1
2
Bijψ

iψj +
1
2
Bijψ̄iψ̄j

]
.

(2.37)
Thus the supersymmetric sigma-model on a manifold with boundary is characterized by
the tripel (K,B,w).

3 Boundary conditions from stationarity of the action

As is well-known, the (classical) action of a field theory encodes the field equations and
boundary conditions. Indeed, in order to obtain the field equations upon varying the action,
one has to perform some partial integrations. This generates boundary terms. Stationarity
of the action requires the vanishing of the bulk terms, which yields the Euler-Lagrange
field equations, and of the boundary terms, which yields boundary conditions. In general,
one can add a boundary action (respecting the various symmetries) which, upon variation,
yields extra boundary terms and, hence, modifies the boundary conditions. These boundary
conditions should also ensure the conservation of the (appropriately modified) total energy
and the components of the total momentum that are parallel to the boundary.

In this section, after briefly looking at the simple example of a single scalar field, we will
carry out this program for our supersymmetric non-linear sigma-model action S = S(2) +Ŝ.
(Henceforth, “supersymmetric” means invariant under the two supersymmetries preserved
by the boundary, i.e. satisfying ε̄ = εσn.) We will identify the boundary terms generated
upon varying the fields and express them entirely in terms of the boundary superfields. This
leads to simple supersymmetric boundary conditions. Adding a general supersymmetric
boundary action SB of the form (2.35), we can generate extra boundary terms and obtain
general supersymmetric boundary conditions. More precisely, we will show that for every
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SB, consistent supersymmetric boundary conditions are obtained as solutions of a set of
partial differential equations involving B and the first derivatives of the Kähler potential.
(For a single chiral superfield one just has an ordinary differential equation.) Conversely,
every supersymmetric boundary condition is shown to determine (modulo an integrability
condition) an appropriate (non-unique) boundary action SB. This integrability condition
has a nice geometric interpretation: it states that, on the Kähler manifold, the boundary
conditions must define a Lagrangian submanifold. We provide several explicit examples
of boundary actions and boundary conditions they determine, and vice versa. The whole
discussion of boundary conditions will be in terms of boundary superfields and, hence,
will be manifestly supersymmetric. It will also be manifestly covariant with respect to
arbitrary holomorphic field redefinitions of the non-linear sigma model. We will also show
that the total energy (possibly including a boundary energy), as well as the two tangential
components of the total momentum are indeed conserved, once the bulk equations of motion
and the boundary conditions are imposed.

A remark on notation: in this section we will consider arbitrary field variations, denoted
again by δz, δψ etc. These are not meant to be the susy variations. Similarly, δS will denote
the variation of an action under these field variations.

3.1 A warm-up exercice: a single scalar field

It is most instructive to first recall the case of a single scalar field with bulk action

Sbulk =
∫
M

d4x

[
1
2
K(ϕ) ∂µϕ∂µϕ− V (ϕ)

]
. (3.1)

Upon varying the field ϕ one gets

δSbulk =
∫
M

d4x [. . .]δϕ−
∫
∂M

d3xK(ϕ)∂nϕδϕ , (3.2)

where [. . .] = 0 is the Euler-Lagrange field equation for ϕ. Requiring δSbulk = 0 then implies
this field equation and a boundary condition on ϕ such that the boundary term vanishes.
Clearly, the latter is either ∂nϕ|∂M = 0 (Neumann) or δϕ|∂M = 0, i.e. ϕ|∂M = const
(Dirichlet). Let us insist that we have two possibilities and the boundary conditions are
not determined uniquely.

We can add an extra boundary action (which can depend on ϕ and ∂nϕ since both are
2 + 1 dimensional scalar fields)

Sbound =
∫
∂M

d3x b(ϕ, ∂nϕ) ⇒ δSbound =
∫
∂M

d3x
(
∂1b(ϕ, ∂nϕ) δϕ+ ∂2b(ϕ, ∂nϕ) ∂nδϕ

)
,

(3.3)
where ∂1b and ∂2b denote the derivatives of b with respect to its first and second arguments.
Vanishing of the total boundary term now requires (on ∂M)(

∂1b(ϕ, ∂nϕ)−K(ϕ)∂nϕ
)
δϕ+ ∂2b(ϕ, ∂nϕ) ∂nδϕ = 0 . (3.4)

This can only be satisfied if there is a relation between ϕ and ∂nϕ on ∂M, i.e. a boundary
condition.
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Let us first assume that the boundary condition does not involve ∂nϕ. It is then of the
form h(ϕ) = 0 which is generically solved with ϕ equal to one of the roots of h. Hence this
is a Dirichlet condition and implies δϕ = 0. Relation (3.4) then implies ∂2b(ϕ, ∂nϕ) = 0,
i.e. Sbound =

∫
∂Md3x b̃(ϕ).

If the boundary condition does involve ∂nϕ, generically we can solve it as ∂nϕ = g(ϕ)
which implies δ∂nϕ = g′(ϕ)δϕ. For g = 0 this is a Neumann condition, while for general g
it could be called a mixed boundary condition. Equation (3.4) then gives

(
∂1b(ϕ, g(ϕ))−

K(ϕ)g(ϕ)
)
δϕ+ ∂2b

(
ϕ, g(ϕ)

)
g′(ϕ)δϕ = 0, which can be rewritten as3

d
dϕ

b
(
ϕ, g(ϕ)

)
= K(ϕ) g(ϕ) . (3.5)

We see that for given function b, i.e. for given boundary action SB, the boundary condition,
i.e. the function g, is determined as a solution of this generally non-linear ordinary differ-
ential equation.4 If one had several scalar fields, one would similarly get a set of non-linear
partial differential equations. The non-linearity implies again that, in general, there are
several solutions.

One can ask whether one could add a boundary action involving higher, e.g. second
order normal derivatives like

∫
∂Md3x a(ϕ, ∂nϕ, ∂2

nϕ) to obtain a boundary condition like
∂2
nϕ = f(ϕ, ∂nϕ). Going through a similar analysis as before, instead of (3.5) one now gets

two partial differential equations: ∂
∂xa
(
x, y, f(x, y)

)
= K(x) y and ∂

∂ya
(
x, y, f(x, y)

)
= 0.

These two equations are incompatible, showing that boundary conditions involving second-
order normal derivatives cannot follow from a variational principle. Obviously, the same
conclusion applies for even higher-order normal derivatives.

Another, maybe more physical aspect of boundary conditions is that they should ensure
conservation of energy and momentum. Of course, the presence of the boundary breaks
translational invariance in the xn-direction and we only expect P µ̂ (µ̂ 6= n), i.e. the total
energy and the total tangential momenta to be conserved. We will see that the boundary
conditions determined by b(ϕ, ∂nϕ) are exactly such that the naive momenta P µ̂, µ̂ 6= 0
are conserved and that P 0 is conserved once we add the “boundary energy”

∫
d2x b.

First note that translational invariance in all four space-time directions of the bulk
Lagrangian L = 1

2K(ϕ)∂µϕ∂µϕ− V (ϕ) and the Euler-Lagrange field equations imply

∂µT
µ
ν = 0 , Tµν =

∂L
∂ ∂µϕ

∂νϕ− δµν L (3.6)

everywhere inM, even on the boundary ∂M. In particular, we have Tnν̂ = K(ϕ) ∂nϕ∂ν̂ϕ.
Similarly, translational invariance in the three boundary directions xµ̂ of the “boundary

3For g 6= 0 one cannot have a Dirichlet condition and, hence, we can regard δϕ as the unconstrained

variation.
4As a simple example, consider b(ϕ, ∂nϕ) = 1

γ
ϕ∂nϕ and K = 1. Then the differential equation (3.5)

is solved by g(ϕ) ∼ ϕγ−1, i.e. a boundary condition ∂nϕ ∼ ϕγ−1. Conversely, for given g it is not

difficult to find an appropriate function b(x, y) such that g is a solution of (3.5): any bα with bα(x, y) =`
y
g(x)

´α R x
dx′K(x′)g(x′) does the job. Let us note that for α = 0 the same b allows for both, ∂nϕ = g(ϕ)

and for Dirichlet conditions.
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Lagrangian” b(ϕ, ∂nϕ) (i.e. no explicit dependence on xµ̂), together with the boundary con-
dition ∂nϕ = g(ϕ) imply ∂ν̂ b(ϕ, ∂nϕ) = ∂ν̂ b

(
ϕ, g(ϕ)

)
= ∂ν̂ϕ

d
dϕb
(
ϕ, g(ϕ)

)
= ∂ν̂ϕK(ϕ)g(ϕ),

where we used (3.5) in the last step. This, together with the boundary condition, shows
that on the boundary Tnν̂ is a total derivative:

Tnν̂ = K(ϕ) g(ϕ)∂ν̂ϕ = ∂ν̂ b on ∂M . (3.7)

We now define the total energy and momenta P ν̂ as

P ν̂ =
∫
xn≤0

d3xT 0ν̂ − g0ν̂

∫
xn=0

d2x b . (3.8)

Clearly, −b plays the rôle of a “boundary potential” and must contribute to the total
energy. Then, using ∂µTµν̂ = 0, we have

d
dt
P ν̂ =

∫
xn=0

d2x
(
− Tnν̂ − g0ν̂∂0b

)
=
∫
xn=0

d2x
(

+ ∂ν̂b− g0ν̂∂0b
)

= 0 . (3.9)

Indeed, for ν̂ = 0 the integrand vanishes, while for ν̂ 6= 0 the integrand is a total derivative
in one of the two tangential directions so that the integral vanishes, too.

In the remainder of this section, we will apply similar arguments to the supersymmetric
sigma-model starting from our supersymmetric action S = S(2) + Ŝ.

3.2 Boundary terms from varying S + SB

To begin with, we determine the boundary terms that result from varying the fields in
S = S(2) + Ŝ and doing the partial integrations. Of course, since Ŝ is a boundary action
it only contributes to the boundary term and not to the field equations. Schematically,
calling the fields ξa, we have

δS(2) =
∫
M

d4x (eom)a δξa +
∫
∂M

d3x Σ(2), δŜ =
∫
∂M

d3x Σ̂ , (3.10)

where (eom)a is the Euler-Lagrange field equation for the ath field ξa, and
∫
∂Md3x (Σ(2)+Σ̂)

is the boundary term we want to determine. Since the total action S is supersymmetric,
its variation δS necessarily also is supersymmetric. However, the bulk and the boundary
terms have no reason to be separately supersymmetric, and indeed they will turn out not to
be. Nevertheless, if the field equations are satisfied everywhere in the bulk (and hence also
on the boundary) the bulk term vanishes and the boundary term must be supersymmetric
by itself. In fact, we will find that we do not need to impose all field equations, it will be
enough to impose the (algebraic) field equations for the auxiliary fields in order to make
the boundary term supersymmetric.5 Imposing a bulk field equations on the boundary
term certainly does not constitute any restriction when requiring that the total variation
of the action vanishes: the bulk and boundary terms both have to vanish. Vanishing of the
first gives the field equations of motion and we can certainly use them at the boundary to
simplify the boundary term.

5That the boundary terms cannot be expressed in terms of the boundary superfields and their variations

unless the auxiliary field equations are imposed has also been observed earlier, see e.g. [34–36].
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The boundary term Σ(2) arises from the partial integrations, and to determine it, it is
enough to look at the D-term (2.21). We find

Σ(2) =
{
− δzi

(
Kj
i ∂nz̄j −

i

2
Kk
ijψ

jσnψ̄k

)
+
i

2
Kj
i δψ

iσnψ̄j

}
+ h.c. . (3.11)

Next, from (2.33) we get, after slightly rearranging the terms

Σ̂ =
{
− i

2
Kj
i δz

i
(
f̄j + i∂nz̄j

)
+
i

2
Kij δz

i
(
f j − i∂nzj

)
+
i

2
Kj δ

(
f j − i∂nzj

)
+i δzi

(
wi −

1
4
K lm
i ψ̄lψ̄m

)
+
i

4
Kilmδz

iψlψm +
i

2
Kjkδψ

jψk
}

+ h.c. (3.12)

Comparing with (2.15) one sees that the combinations (f j − i∂nzj) and (f̄j + i∂nz̄j) are
exactly those appearing in the boundary superfields. On the other hand, Σ(2) contains
a ∂nz̄j without the corresponding f̄j which is the reason why we cannot rewrite the sum
Σ(2)+Σ̂ in terms of boundary superfields and their variations. Indeed, as it stands, Σ(2)+Σ̂
is not supersymmetric. We now use the algebraic field equations for the auxiliary fields.
They read

Ki
jf
j = wi − 1

2
Ki
jkψ

jψk , Kj
i f̄j = wi −

1
2
Kjk
i ψ̄jψ̄k , (3.13)

which allows us to rewrite wi − 1
4K

lm
i ψ̄lψ̄m = Kj

i f̄j + 1
4K

lm
i ψ̄lψ̄m. Then

(
Σ(2) + Σ̂

)∣∣
f -eom

=
i

2

{
δzi
[
Kj
i

(
f̄j + i∂nz̄j

)
+Kij

(
f j − i∂nzj

)
+

1
2
K lm
i ψ̄lψ̄m +

1
2
Kilm ψ

lψm + Km
il ψ

lσnψ̄m

]
+Ki δ

(
f i − i∂nzi

)
+Kj

i δψ
iσnψ̄j +Kij δψ

iψj
}

+ h.c. (3.14)

This can now be compactly rewritten in terms of the boundary superfields φi, φ̄i, cf. (2.15),
and their variations as(

Σ(2) + Σ̂
)∣∣
f -eom

=
∫

d2θ

(
− i

2
δφiKi

(
φj , φ̄k

)
+
i

2
δφ̄iK

i
(
φj , φ̄k

))
, (3.15)

which now is manifestly supersymmetric. Note that this form of the boundary term could
also be inferred from eq. (90) of ref [38] which was obtained in a somewhat different
context. It is perhaps useful to stress that this boundary term (3.15) is a function of the
boundary superfields (and their variations) only and not of their (normal) derivatives. Of
course, when expanding in components, ∂nz is present in the boundary term, see (3.14).
It is important that the appearance of ∂nz is entirely determined by the expansion of the
boundary superfield φ, cf. (2.15). This results in a more rigid structure of the boundary
term than is the case for a non-supersymmetric theory like the scalar example discussed
in the previous subsection. Note that for a canonical Kähler potential and a single chiral
superfield e.g. one simply has (Σ + Σ̂)|f -eom =

∫
d2θ

(
− i

2 δφ φ̄ + i
2 δφ̄ φ

)
, which is the
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four-dimensional counterpart of a formula which appeared in [36] for the three-dimensional
Wess-Zumino model.

As discussed in the previous section, we have the freedom to add to S = S(2) + Ŝ any
susy invariant boundary action SB that could depend a priori on the boundary superfields
φi and φ̄i, as well as their (super)derivatives. However, it is easy to convince oneself that any
(2 + 1 Poincaré invariant) occurrence of such derivatives in SB will either lead to boundary
terms involving second normal derivatives like ∂2

nz or involving ∂µ̂∂
µ̂z (which is related

by the bulk field equations to ∂2
nz). Such higher derivative boundary terms will require

corresponding “higher-derivative” boundary conditions (involving e.g. ∂nφ, and hence ∂2
nz

in components) which are inconsistent, as discussed above. Hence, we only allow to add
a boundary action of the form (2.35), with the function B only constrained by a reality
condition:

SB =
∫
∂M

d3x

∫
d2θ B

(
φl, φ̄k

)
,

[
B(zl, z̄k)

]∗ = B(zl, z̄k) . (3.16)

Variation of SB then yields additional boundary terms: δSB =
∫
∂Md3xΣB with

ΣB =
∫

d2θ
(
Bi
(
φl, φ̄k

)
δφi +Bi

(
φl, φ̄k

)
δφ̄i

)
(3.17)

Combining with (3.15) the complete boundary term reads

(
Σ(2) + Σ̂

)∣∣
f -eom

+ ΣB =
∫

d2θ

[
δφi
(
Bi
(
φl, φ̄k

)
− i

2
Ki

(
φj , φ̄k

))
+ δφ̄i

(
Bi
(
φl, φ̄k

)
+
i

2
Ki
(
φj , φ̄k

))]
. (3.18)

3.3 Boundary conditions

Boundary conditions must relate the φ̄j and the φi in such a way that (3.18) vanishes.
Obviously, such boundary conditions will be manifestly supersymmetric.

3.3.1 Wess-Zumino model

To begin with, let us look at the simplest case of a single chiral field with canonical Kähler
potential and B = 0 (Wess-Zumino model). As noted above, in this case (3.18) reduces to∫

d2θ
(
− i

2 δφ φ̄+ i
2 δφ̄ φ

)
which should vanish by the boundary condition. The latter must

be of the form
φ̄ = G(φ) . (3.19)

Indeed, the only condition not relating φ̄ to φ that could lead to a vanishing of the boundary
terms would be δφ = δφ̄ = 0, implying that φ (and φ̄ = φ†) is constant on the boundary
and, hence, z, ψ and ∂nz + if are all constant on the boundary. Since the auxiliary field
f has to be replaced by w̄′ in the end, this would imply that z and ∂nz are fixed on
the boundary, which is too strong and would eliminate all dynamics in the bulk. Thus
any physically acceptable supersymmetric boundary condition must relate φ and φ̄. Such
a condition can always be solved, at least locally, in the form (3.19). Furthermore, the
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function G cannot be arbitrary. Taking the hermitian conjugate of (3.19) we see that the
inverse function must equal the complex conjugate function:

G−1 = G∗. (3.20)

We will call functions G(z) that satisfy this relation admissible functions.6 Now, (3.19)
implies δφ̄ = G′(φ)δφ and we see that the boundary term vanishes provided(
− G(φ) + G′(φ)φ

)
δφ = 0. We have just seen that δφ cannot be zero, and we get a

simple linear differential equation for the function G in one (complex) variable:

G(z)− z G′(z) = 0 , (3.21)

with admissible solution G(z) = eiδz, so that the boundary condition is

φ̄ = eiδφ . (3.22)

If we now add an invariant boundary action SB =
∫
∂Md3x

∫
d2θ B(φ, φ̄) with B an

arbitrary real function of the single boundary superfield φ and its hermitian conjugate
φ̄, (3.18) reduces to ∫

d2θ

[
δφ

(
∂B

∂φ
− i

2
φ̄

)
+ δφ̄

(
∂B

∂φ̄
+
i

2
φ

)]
. (3.23)

Note that
(
∂B
∂φ −

i
2 φ̄
)

or
(
∂B
∂φ̄

+ i
2 φ
)

cannot be made to vanish just by a choice of B since

it would require B = ± i
2φφ̄ which would be purely imaginary, rather than real. As before,

one is forced to conclude that there must be a condition relating φ̄ and φ on the boundary
which, again, we write in the form (3.19). Replacing then δφ̄ by G′(φ)δφ in (3.23), the
integrand of the latter becomes δφ

[(
∂B
∂φ −

i
2 G(φ)

)
+ G′(φ)

(
∂B
∂φ̄

+ i
2 φ
)]

. This vanishes
provided the function G satisfies the non-linear ordinary differential equation

d
dz
B
(
z,G(z)

)
=
i

2
(
G(z)− z G′(z)

)
. (3.24)

3.3.2 N superfields with arbitrary Kähler potential and B = 0

Let us now discuss the general supersymmetric sigma model but not yet adding the extra
boundary term, i.e. keeping B = 0. In this case the boundary conditions must be such
that (3.15) vanishes. This will require N relations between the φi and the φ̄j , which
we could write as g(i)(φj , φ̄k) = 0, i = 1, . . . N . Possibly after taking appropriate linear
combinations, the g(i) are real-valued functions. Again, these conditions must be such that
we can solve them (at least locally) to express all φ̄j as functions of the φk, or else a subset
of the φi would satisfy some condition f(φi) = 0 which would again lead to too strong
boundary conditions. Hence, at least in principle, we can write the boundary conditions as

φ̄i = Gi(φj) (3.25)

6Sometimes, one has to impose further conditions on G. For example, G(z) = γ
z

does satisfy (3.20), but

the condition z̄ = G(z) only makes sense for γ > 0.
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Again, the complex conjugate functions must give the inverse relations. This constraint is
best written in terms of the matrices of partial derivatives

Gi,j(Gj,k)∗ = δki , Gi,j =
∂Gi
∂zj

. (3.26)

The boundary conditions (3.25) imply for the field variations δφ̄i = Gi,j δφ
j so that the

boundary term (3.15) vanishes if

Ki

(
zl, Gk(zl)

)
−Gm,i(zl)Km

(
zl, Gk(zl)

)
= 0 . (3.27)

For given Kähler potential K, these are N partial (in general non-linear) differential equa-
tions for the N function Gm. A simple consistency condition can be obtained by taking
the derivatives with respect to zj and antisymmetrizing in i and j. This yields the fol-
lowing integrability condition on the boundary conditions and Kähler metric7 evaluated at
z̄m = Gm(zl): (

Kk
i Gk,j

)∣∣
z̄m=Gm(zl)

=
(
Kk
j Gk,i

)∣∣
z̄m=Gm(zl)

. (3.28)

This integrability condition actually has a nice geometrical interpretation: Kj
i is the Kähler

metric on the scalar manifold which is the N -complex dimensional manifold with “complex
coordinates” zi et z̄i. The Kähler 2-form is given by K = Kk

i dzi ∧ dz̄k. The boundary
conditions z̄i = Gi(zj) constitute N real conditions and hence select an N -real dimensional
submanifold L. The pullback of the Kähler form to this submanifold then is

K
∣∣
L = Kk

i dzi ∧Gk,jdzj
∣∣
z̄m=Gm(zl)

=
1
2
(
Kk
i Gk,j −Kk

jGk,i
)∣∣
z̄m=Gm(zl)

dzi ∧ dzj . (3.29)

We see that the integrability condition (3.28) is equivalent to the vanishing of K|L which is
the statement that the submanifold L defined by the boundary conditions is a Lagrangian
submanifold.

Let us note that the entire discussion of boundary conditions is manifestly covariant
with respect to holomorphic field redefinitions Φ̃i = F i(Φj) (and ¯̃Φi = Fi(Φ̄j) with Fi ≡
F̄ i ≡ (F i)∗). Indeed, the Kähler potential simply transforms as K̃(z̃l, ¯̃zk) = K(zl, z̄k)
so that Ki = M j

i K̃j and Km = M
m
n K̃

n where M j
i ≡ M(z) j

i = ∂F j(z)
∂zi

and M
m
n ≡

M(z̄)mn =
(
M(z)

) n

m
. The boundary condition z̄i = Gi(zj) becomes ¯̃zi = G̃i(z̃l) where

G̃i(z̃l) = Fi
(
Gj
(
(F−1)k(z̃l)

))
≡ G̃i(z̃l). It follows that G̃i,l = ∂

∂ezl G̃i is given by G̃i,l =

(M−1) k
l Gj,kM

j
i or equivalently Gj,k = M l

k G̃i,l (M
−1)ij so that indeed the l.h.s. of the

boundary condition (3.27) transforms as

Ki −Gm,iKm = M j
i

(
K̃j − G̃n,jK̃n

)
. (3.30)

Actually one can use this freedom to do holomorphic field redefinitions to go to “co-
ordinates” in which the boundary conditions are simply ¯̃zi = z̃i. Said differently, we can
find new holomorphic coordinates such that the Lagrangian submanifold determined by

7A sufficient condition on the Kähler potential for (3.27) and hence also (3.28) to be satisfied is

K(zl, z̄k) = K
`
G∗l (z̄), Gk(z)

´
, stating that the Kähler potential is “invariant” under z̄j → Gj(z), z

i →
G∗i (z̄). Indeed, taking ∂

∂zi of this relation and setting z̄k = Gk(z) yields (3.27).
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the boundary conditions is simply characterized by vanishing imaginary parts of the z̃i. Of
course, this might be at the price of generating some complicated K̃i, K̃m, etc. To achieve
this, it is enough to let

z̃i ≡ F i(zl) = λzi + λ̄Gi(zl) , λ ∈ C , (3.31)

where λ should be chosen such that this is invertible (except possibly at points where F i

might have poles or cuts). Then, indeed, the condition z̄i = Gi(zl) translates into ¯̃zi = z̃i.
Note that this field redefinition (3.31) is not the only one that trivializes the boundary

conditions: any ˜̃zi = F̃ i(z̃j), such that the ˜̃zi are real whenever the z̃i are real, does
the job.

Let us finish this subsection by considering a large class of Kähler potentials of the form

K(zl, z̄k) = k(zlz̄l) . (3.32)

This includes the canonical Kähler potential, as well as the standard Kähler potential on
CPN . Then k′ drops out of (3.27) which reduces to Gi = zmGm,i. This is solved by

Gj(zl) = Njkz
k, N∗ = N−1 (3.33)

with a constant symmetric matrix N . In the simplest cases, N is diagonal and then simply
Gj(zl) = eiδjzj with the δj arbitrary constant phases.

3.3.3 N superfields with arbitrary Kähler potential and general B

We now add the additional boundary action SB. The boundary conditions φ̄i = Gi(φj)
must be such that the full boundary term (3.18) vanishes. Inserting δφ̄i = Gi,j δφ

j into this
boundary term we get Bi− i

2Ki +Gj,i(Bj + i
2K

j) = 0. It is understood that all quantities
are evaluated with the boundary conditions imposed, i.e. Ki ≡ Ki

(
φl, Gk(φl)

)
, etc. Hence,

these are N partial differential equations in the N variables φi. Equivalently, we can call
these variables just zi. Thus, after a slight rearrangement, our equations finally read

∂

∂zi
B
(
zl, Gk(zl)

)
=
i

2
[
Ki

(
zl, Gk(zl)

)
−Gm,i(zl)Km

(
zl, Gk(zl)

)]
, (3.34)

or, equivalently

∂

∂zi

[
B
(
zl, Gk(zl)

)
+
i

2
K
(
zl, Gk(zl)

)]
= iKi

(
zl, Gk(zl)

)
. (3.35)

Again, there is an integrability condition: if we take ∂
∂zj

and antisymmetrize in i and
j, the left hand side obviously vanishes. For the right hand side, this implies the same
condition (3.28) as we already derived above for vanishing B. Again, the submanifold
determined by the boundary conditions must be a Lagrangian submanifold.

If this integrability condition is satisfied, we can find a function B̃(zl) such that its
derivatives give the right hand side of (3.34). The non-trivial question is whether this
function B̃(zl) can be written asB

(
zl, Gk(zl)

)
withB(zl, z̄k) real for any complex zl. This is

indeed the case as we will prove below, after looking at a few examples. Actually, in general,
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there are many ways to extend B
(
zl, Gk(zl)

)
defined on the Lagrangian submanifold to a

real B(zl, z̄k) on the whole Kähler manifold. Thus given any set of boundary conditions
that defines a Lagrangian submanifold of the Kähler manifold, we can find a family of
appropriate real functions B(zi, z̄i) and corresponding boundary actions SB.

Conversely, for given B, an admissible solution {Gj(zl)}j=1,...N must now satisfy (3.26).
We will show again below that we can always find a solution of the differential equa-
tion (3.34) that satisfies (3.26). Actually, since the differential equations are non-linear,
one typically has several “branches” of solutions.8 We will see some explicit examples
below.

Note again that our equations (3.34) and (3.35) are perfectly covariant under arbitrary
holomorphic field redefinitions. In particular, B̃(z̃l, ¯̃zk) = B(zl, z̄k) and one finds again that
both sides of the equations transform with the same matrix M defined above. As before,
the field redefinition (3.31) allows us to always achieve φ̃i = φ̃i.

Let us summarize: we have shown how the boundary conditions on the superfields are
determined via (admissible) solutions of some differential equations that involve the Kähler
potential and the function B of the boundary action. Below, we will show that for any
real B one gets corresponding supersymmetric boundary condition(s), and that for any
given supersymmetric boundary condition that defines a Lagrangian submanifold, one can
always find a (family of) corresponding real B.

3.4 Examples of susy boundary conditions

We will now give various more or less non-trivial examples of boundary conditions deter-
mining appropriate boundary actions, i.e. real functions B, and, conversely, of boundary
actions determining the boundary conditions. We have already discussed above boundary
conditions corresponding to a vanishing boundary action SB. Most often, we will simply
write the boundary conditions as z̄i = Gi(zj) but one should keep in mind that this is a
relation for the full boundary superfields: φ̄i = Gi(φj).

3.4.1 A single chiral superfield with canonical Kähler potential

We first look at the simplest case of a single chiral superfield with canonical Kähler potential
K(z, z̄) = z̄z, i.e. the Wess-Zumino model to which we add the boundary action SB. The
differential equation to be solved then is (3.24), i.e. d

dzB
(
z,G(z)

)
= i

2

(
G(z)− z G′(z)

)
.

a) Generically, we do not know how to solve this differential equation for arbitrary (real)
B(z, z̄). However, if

B(z, z̄) = F (|z|2) , (3.36)

with a real function F , it becomes d
dz

[
− iF

(
z G(z)

)
+ 1

2zG(z)
]

= G(z). Introducing

Ĝ(z) = z G(z), this is immediately integrated as −i
∫ bG

F ′(ξ)dξ
ξ + 1

2 log Ĝ = log z.
Hence the boundary condition is

φ̄ = φ exp
(
2iH(φφ̄)

)
, with H(x) =

∫ x

F ′(ξ)
dξ
ξ
. (3.37)

8This is somewhat similar to what happened for a single scalar field with b = 0 where the non-linear

condition ∂nϕ δϕ = 0 has two branches of solutions: ∂nϕ = 0 (Neumann) and ϕ = const (Dirichlet).
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This is like (3.22) except that now the phase δ no longer is a constant but a function of
the real superfield φφ̄. Conversely, given a boundary condition like this with any real
function H(x), the appropriate boundary action is given by B(z, z̄) =

∫ zz̄
H ′(ξ)ξdξ.

b) As a second example, consider a non-linear (quadratic) boundary condition like
z2 − z̄2 + i = 0, which we choose to solve as z̄ = G(z) =

√
z2 + i. Inserting this in

the right hand side of eq. (3.24) and integrating gives B
(
z,G(z)

)
= −1

2

∫ z dζ√
ζ2+i

=

−1
2 log

(
z +
√
z2 + i

)
which we can rewrite as −1

2 log
(
z + G(z)

)
= −1

2 log(z + z̄),
which is indeed real.

c) Next, consider a boundary condition of the form

|z|2 = γ ⇔ z̄ =
γ

z
(γ > 0) . (3.38)

Then G(z) = γ
z . Inserting this into the right hand side of eq. (3.24) and integrating

gives B
(
z,G(z)

)
= iγ log z + const. Using γ

z = z̄ we can rewrite this as

B(z, z̄) = − i
2
γ log

z̄

z
+ βz̄z , β ∈ R , (3.39)

which is manifestly real. Note that there is a family of functions B parametrised by β.

d) Let us now start with the function B of the previous example (3.39) and see
whether (3.38) is the only corresponding boundary condition. To simplify things, take
β = 0. The differential equation (3.24) for G(z) then becomes γ

(
G′

G −
1
z

)
+G−zG′ = 0.

If we let G(z) = γz f(z), this becomes f ′
(
z2− 1

f

)
= 0. Clearly, there are two branches

of solutions. The first is f = 1
z2

, i.e. G(z) = γ
z as expected, while the second is f ′ = 0,

i.e. G(z) = c z with c = eiδ: clearly, if γ < 0, only the second solution is acceptable.

3.4.2 A single chiral superfield with a non-canonical Kähler potential

With a non-canonical Kähler potential, the differential equation (3.35) now is

d
dz

[
B
(
z,G(z)

)
+
i

2
K
(
z,G(z)

)]
= iKz

(
z,G(z)

)
, (3.40)

where Kz = ∂
∂zK(z, z̄). Most of the interesting (one-complex dimensional) Kähler man-

ifolds have a Kähler potential of the form K(z, z̄) = K(|z|2), maybe up to some simple
holomorphic field redefinition. This is the case, in particular, for the standard Kähler
potential on CP1. If we assume this form, it is easy to adapt the previous examples
to the present case. Indeed, if B(z, z̄) = F (|z|2), we again find the boundary condition
φ̄ = φ exp

(
2iH(φφ̄)

)
but now with H(x) =

∫ x F ′(ξ)
K′(ξ)

dξ
ξ , while the boundary condition

z̄ = γ
z ≡ G(z) now leads to B(z, z̄) = i

2γK
′(γ) log z

z̄ . One can easily work out many
more examples. One can also treat the non-linear boundary condition z2 − z̄2 + i = 0
studied above, by first doing a field redefinition u = z2 + i

2 which transforms it into the
linear condition ū = u but generates a non-trivial Kähler potential. One can then obtain
B̃(u, ū) and check that it coincides with B(z, z̄) = −1

2 log[z + z̄], demonstrating explicitly
for this example the covariance of our differential equation (3.40) under holomorphic field
redefinitions.
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3.4.3 Several chiral superfields with arbitrary Kähler potential

Again, we will only look at one rather symmetric class of examples:

K(zl, z̄k) = K(zj z̄j) , B(zl, z̄k) = F (zj z̄j) . (3.41)

This includes, in particular, the standard Kähler potential on CPN . The differential
equations (3.34) or (3.35) then yield

(F ′(ξ)
K′(ξ) + i

2

) ∂ξ
∂zj

= iGj , where ξ = zjGj(zl). The ansatz

Gj(zl) = e2iH(ξ)Njkz
k, with a symmetric and unitary constant matrix N , is a solution

provided H(ξ) =
∫ ξ F ′(x)
K′(x)

dx
x . Thus, the boundary condition reads

φ̄j = exp
[
2iH(φlφ̄l)

]
Njk φ

k, H(ξ) =
∫ ξ F ′(x)
K′(x)

dx
x
. (3.42)

In particular, z̄j = Njkz
k for B ≡ F = 0 and we recover (3.33).

3.5 Constructing a real B and admissible solutions

In this subsection, we will show that, for given boundary conditions, the function
B
(
zi, Gi(zj)

)
obtained by integrating9 the differential equations (3.34), can always be ex-

tended to a real function B(zi, z̄i) on the entire scalar manifold. We will also show that
for any given real B and solution Gi of the differential equations, one can always choose
the constants of integration such that Gi is an admissible solution.

We first look at the simplest case of a single chiral superfield with canonical Kähler
potential K(z, z̄) = z̄z, i.e. the Wess-Zumino model to which we add the boundary action
SB. Recall that the differential equation then simply is (3.24)

d
dz
B
(
z,G(z)

)
=
i

2
(
G(z)− z G′(z)

)
. (3.43)

For a given boundary condition, i.e. given function G(z), one can integrate the right hand
side of this equation as

B
(
z,G(z)

)
= B̃(z) , with B̃(z) =

i

2

∫ z(
G(x′)− x′G′(x′)

)
dx′. (3.44)

The non-trivial question is whether one can find a function B(z, z̄) which is real for all
z ∈ C and which is such that B

(
z,G(z)

)
= B̃(z). For the examples studied above, it was

more or less easy to see how to use the condition z̄ = G(z) to rewrite the function B̃(z) as
an obviously real function of z and z̄. We will now show that one can always obtain such
a real function B(z, z̄). The proof also provides a general explicit construction, although
for specific examples this might not be the simplest one. We have already seen that the
function B(z, z̄) is not unique at all: indeed, if the boundary condition z̄ = G(z) is the
solution of g

(
z,G(z)

)
= 0 with real g, we can always add g(z, z̄) (or any non-singular

function of g(z, z̄)) to B(z, z̄).
Proof: let us first show that the function B̃(z) defined by the integral (3.44) is real

whenever z satisfies z̄ = G(z). More precisely, B̃ (and also B) is only defined up to an
9Of course, we suppose the integrability condition to be satisfied.
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arbitrary additive constant which has to be fixed appropriately. The condition z̄ = G(z)
defines a curve (possibly with several disconnected components) in the complex plane which
we parametrize10 by a real parameter x as z = h(x) and z̄ = h̄(x). Note that, by definition,
we have h̄(x) = G

(
h(x)

)
, and hence also G′

(
h(x)

)
= h̄′(x)/h′(x). We need to show that

B̃
(
h(x)

)
is real, up to a constant, i.e. that d

dxB̃
(
h(x)

)
is real. Using (3.44) we get

d
dx
B̃
(
h(x)

)
= h′(x)

d
dz
B̃(z)

∣∣∣
z=h(x)

=
i

2
h′(x)

(
G(z)− zG′(z)

)∣∣∣
z=h(x)

=
i

2
h′(x)

(
h̄(x)− h(x)

h̄′(x)
h′(x)

)
= Im

(
h(x)h̄′(x)

)
, (3.45)

which is real. Adjusting the additive constant, we then have a real B̃
(
h(x)

)
. This defines a

real function on the curve determined by the boundary condition. To define a real B(z, z̄)
for all complex z, we note that (if x is a good parameter along the curve) one can invert
the function h (and hence h̄) on the curve, so that x = h−1(z) and x = h̄−1(z̄). One can
then analytically continue this function h−1 (and hence h̄−1) away from the curve. Then,
of course, h−1(z) and h̄−1(z̄) no longer are real and equal, but complex conjugate. Define

B(z, z̄) = B̃

(
h

(
1
2
(
h−1(z) + h̄−1(z̄)

)))
. (3.46)

For any complex z this is real since it equals B̃
(
h(x̂)

)
with a real x̂, and for z̄ = G(z) it

reduces to B̃
(
h(x)

)
= B̃(z). This completes the proof.

Note that the analytically continued function h−1(z) we constructed during the proof
actually provides a field redefinition Φ̃ = h−1(Φ) such that, in terms of the Φ̃, the boundary
condition is simply the linear condition Φ̃ = Φ̃ (i.e. z̃ = z̃ for z̃ = h−1(z)).

We have shown how to construct a real B(z, z̄) for any admissible G(z). Conversely,
we will now show that for a given real B(z, z̄) and solution G(z) of the differential equation,
one can always choose the integration constants such that G(z) is an admissible solution,
i.e. a function G such that G−1 = G∗. Suppose that g(z) is a solution of (3.43). Let
f = g−1. Let us show that f̄ is a solution of the same differential equation. To do so, we
start from (3.43), divide it by g′(z), use g as independent variable and write z = f(g). Then

d
dg
B
(
f(g), g

)
=
i

2

(
g

df(g)
dg

− f(g)
)

(3.47)

Take the complex conjugate and note that the reality of B(z, z̄) implies [B(u, v)]∗ = B(v̄, ū).
Then

d
dḡ
B
(
ḡ, f̄(ḡ)

)
= − i

2

(
ḡ

df̄(ḡ)
dḡ

− f̄(ḡ)
)

= +
i

2
(
f̄(ḡ)− ḡ f̄ ′(ḡ)

)
. (3.48)

10For example, writing z = x + iy, the boundary condition z2 + z̄2 = 2γ yields two hyperbolas y =

±
p
x2 − γ and, locally on each, we can use x as parameter to write z = x±i

p
x2 − γ and z̄ = x∓i

p
x2 − γ.
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If we now write z instead of ḡ for the independent variable, we see that f̄ satisfies exactly
the same equation (3.43) as g. Upon choosing the constant of integration appropriately,
we can then take11 f̄ = g, i.e. g is an admissible solution.

For a single chiral field with an arbitrary Kähler potential the differential equa-
tion (3.43) is replaced by (3.40), or equivalently

d
dz
B
(
z,G(z)

)
=
i

2
[
Kz

(
z,G(z)

)
−K z̄

(
z,G(z)

)
G′(z)

]
. (3.49)

It is completely straightforward to adapt the above proof to this case. The only difference
is that (3.45) now is modified to read (note that Kz(z, z̄) is the complex conjugate of
K z̄(z, z̄))

d
dx
B̃
(
h(x)

)
= h′(x)

d
dz
B̃(z)

∣∣∣
z=h(x)

=
i

2
h′(x)

[
Kz

(
z,G(z)

)
−K z̄

(
z,G(z)

)
G′(z)

]∣∣∣
z=h(x)

=
i

2
h′(x)

[
Kz

(
h(x), h̄(x)

)
−K z̄

(
h(x), h̄(x)

) h̄′(x)
h′(x)

]
= Im

[
K z̄
(
h(x), h̄(x)

)
h̄′(x)

]
. (3.50)

The rest of the proof is as above.
Finally, the generalization to an arbitrary number of chiral fields with arbitrary Kähler

potential is no more difficult, except for the notations that become involved. Hence, we
will not spell it out here.

3.6 Energy momentum conservation and boundary conditions

Just as for the scalar example discussed in the beginning of this section, we will now show
that, also in the supersymmetric case, the supersymmetric boundary conditions found
above are exactly what is needed to ensure conservation of the total energy and of the two
tangential components of the total momentum.

Again, translational invariance in all four space-time directions of the bulk Lagrangian
L(2) = 1

2 [K(Φi, Φ̄j)]D + [w(Φi)]F + [w(Φ̄j)]F̄ as given by eqs (2.21) and (2.22), together
with the bulk Euler-Lagrange field equations imply

∂µT
µ
ν = 0 , Tµν =

∂L(2)

∂ ∂µξa
∂νξ

a − δµν L(2), (3.51)

where ξa stands generically for all fields. Explicitly we have

Tµν =
(
Kj
i ∂

µzi∂ν z̄j −
i

2
Kj
i ψ

iσµ∂νψ̄j +
i

2
Kk
ij ψ

jσµψ̄k∂νz
i

)
+ h.c.− δµν L(2). (3.52)

In analogy with our discussion of the scalar field case, we expect the conserved total energy
and conserved total tangential momentum to be given by

P ν̂ =
∫
xn≤0

d3xT 0ν̂ − g0ν̂

∫
xn=0

d2x

(
L̂+

∫
d2θ B(φi, φ̄j)

)
, (3.53)

11Of course, the fact that two functions satisfy the same non-linear first-order differential equation does

not imply that they are identical, up to a choice of integration constant. Indeed, we have seen the example

of G(z) = cz and G(z) = γ
z

being both solutions of the same equation. However, these two solutions are

not of the form g and g−1.
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where L̂ is the integrand of the boundary action Ŝ we had to add to the standard bulk
action S(2), cf. eq. (2.32), namely

L̂ =
i

2

[
Ki(f i − i∂nzi) +

1
2
Kijψ

iψj + 2w
]

+ h.c. . (3.54)

Indeed, for ν̂ = 0 we expect the total energy to receive contributions from the “boundary
potentials” which are −L̂ and −

∫
d2θ B.

Let us now verify that the P ν̂ defined in (3.53) are indeed conserved. Using ∂µT
µ
ν = 0

we have
d
dt
P ν̂ =

∫
xn=0

d2x

[
− Tnν̂ − g0ν̂∂0

(
L̂+

∫
d2θ B

(
φi, φ̄j

))]
. (3.55)

To show that this vanishes, consider the equality of the right-hand sides of eqs (3.14)
and (3.15) and replace δφi by ∂ν̂φi, δzi by ∂ν̂zi, etc. After some rearrangements and using
the auxiliary field equations of motion (3.13), the resulting equality can be written as∫

d2θ

(
− i

2
∂ν̂φ

iKi

(
φj , φ̄k

)
+
i

2
∂ν̂ φ̄iK

i
(
φj , φ̄k

))
= ∂ν̂L̂+ Tnν̂

∣∣
xn=0

. (3.56)

Using the boundary conditions φ̄i = Gi(φl) and the partial differential equations (3.34)
which determine them, the left-hand side of (3.56) is seen to be −∂ν̂

∫
d2θ B

(
φi, Gj(φl)

)
,

so that on the boundary

Tnν̂ = −∂ν̂
(
L̂+

∫
d2θ B

(
φi, Gj(φl)

))
on ∂M . (3.57)

It follows that, provided the boundary conditions are satisfied, the integrand of (3.55)
vanishes for ν̂ = 0, while for ν̂ 6= 0 it is a total derivative in the boundary plane and the
integral again vanishes. Hence P ν̂ as defined by (3.53) is indeed conserved.

3.7 Susy couplings to new boundary fields

So far, we have given a rather complete description of the non-linear sigma model in the
presence of a boundary. This involved the bulk superfields Φi and corresponding boundary
superfields φi, as well as their hermitian conjugate fields. We introduced possible susy
boundary terms of these same boundary superfields φi. We did not, however, introduce
any new degrees of freedom on the boundary. It is the purpose of this subsection to show
that including such additional superfields living only on the boundary is straightforward
and only marginally modifies the previous analysis of boundary conditions.

Let us call ϕA the superfields living only on the boundary. They have the same
component expansion our old boundary superfields,

ϕ(xµ̂, θ) = ζ(xµ̂) +
√

2 θχ(xµ̂)− θθg(xµ̂) , (3.58)

and can be complex or real, ϕ̄ = ϕ (in components: ζ̄ = ζ, ḡ = g and χ̄ = χσn). As
discussed in section two, the real and imaginary parts transform irreducibly under the
2 + 1 dimensional Lorentz group, and we can consider them separately as real. We will
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assume henceforth that all ϕA are real boundary superfields. The 2 + 1 dimensional sigma
model for such fields is well-known, see e.g. [42]. In particular, it contains a a kinetic
term Skin

3 for the ϕA and a superpotential term of the form Sω3 = 2
∫

d3x
∫

d2θ ω(ϕ) =∫
d3x(−2ωAgA − ωABχ

AχB), where ω is a real boundary superpotential. Just as our
previous SB, it is an integral over the boundary superspace and thus it is natural to
combine B(φi, φ̄j) and ω(ϕA) into a single function B(φi, φ̄j , ϕA), so that now

SB =
∫
∂M

d3x

∫
d2θ B(φi, φ̄j , ϕA) . (3.59)

The full action to consider then is

S + SB + Skin
3 . (3.60)

We can now repeat the whole analysis and ask which boundary conditions will ensure
stationarity of the action when the field equations are satisfied. First consider the new
fields ϕA. They are purely 2+1 dimensional fields on ∂M, and since ∂M has no boundary,
vanishing of the δϕA-terms will simply lead to their 2 + 1 dimensional field equations. Of
course, the latter will also involve φi and φ̄j . On the other hand, requiring the variation
of the action with respect to the Φi and Φ̄j to vanish, now leads to exactly the same bulk
field equations as before, but also to boundary conditions that now depend on the new
boundary fields. Indeed, the vanishing of the boundary terms now relates the function
B(zl, z̄k, ζB) to boundary conditions of the form

φ̄j = Gj(φi, ϕA) (3.61)

via the differential equation

∂

∂zi
B
(
zl, Gk(zl, ζB), ζB

)
=
i

2
[
Ki

(
zl, Gk(zl, ζB)

)
−Gm,i(zl, ζB)Km

(
zl, Gk(zl, ζB)

)]
.

(3.62)
This equation is no more difficult to analyze in the presence of the new boundary superfields
than in their absence. It is clear that the ζB appear in (3.62) and in the boundary conditions
z̄j = Gj(zi, ζA) only as additional real parameters. Thus they play no different role from
any of the real parameters appearing in our examples like e.g. γ in (3.38) and (3.39). For
example, for a single chiral bulk superfield with a canonical Kähler potential and a single
“new” real boundary superfield ϕ, a boundary action SB =

∫
∂Md3x

∫
d2θ

[
− i

2 ϕ log φ̄
φ

]
leads to either of the two boundary conditions φ̄ φ = ϕ or φ̄ = eiδ φ on ∂M.

Finally, to show the conservation of the total energy and tangential components of
the total momentum proceeds very similarly as before, The only difference is that now the
new fields ϕA also have their own three-dimensional energy-momentum tensor T ν̂(3)µ̂ which

needs to be included. It obeys ∂µ̂T
µ̂
(3)ν̂ =

∫
d2θ ∂ν̂ϕ

A ∂
∂ϕA

B(φi, φ̄j , ϕC). The rest of the
proof is as before and we will not spell it out.

4 Permeable walls

We now want to apply our formalism to study junctions between two domains, say D1 =
{x ∈ R4|xn ≤ 0} and D2 = {x ∈ R4|xn ≥ 0} that meet on a common boundary or wall
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Figure 1. Two different sigma-models living on adjacent space-time domains D1 and D2 separated
by a common boundary W.

which we will callW, see figure 1. Such a situation might be thought of as a generalization of
the low-energy effective theory of the domain wall example mentioned in the introduction
and studied further in appendix B. In each domain, we consider a collection of chiral
superfields with some non-linear sigma-model action, and a priori unrelated Kähler metrics
and superpotentials. We want to study under which conditions this combined system is
still supersymmetric and, in particular, which are the supersymmetric matching conditions
one can impose across the wall. One trivial possibility is to have just two separate sigma-
models, each with its own boundary conditions, not involving the other fields, and the
boundary action SB just being the sum of the two independent boundary actions. Such
boundary conditions might be called “purely reflective” and the wall “impermeable”. In
this section, we will study the more interesting case with “(partly) transmissive” boundary
conditions, where the two sets of fields interact through a permeable wall. This is achieved
by taking a general boundary action SB that couples both types of boundary fields. The
function B could also depend on additional real superfields ϕA living only on the boundary,
but as discussed in section 3.7, this can be trivially accounted for.

The present situation can be mapped, via a folding procedure, to the one discussed in
the previous sections. More precisely, on can map all fields defined in D2 to some mirror
fields defined in D1 and then study the system of the original fields and the mirror fields
in the single domain D1 with boundary W as we did before. Alternatively, one can just
do a direct analysis of the coupling of the two sigma-models. While both lead to the same
result, of course, we will only present the direct analysis which at present is a bit more
straightforward.

We will end this section with several explicit and rather non-trivial examples, matching
e.g. sigma models with different Kähler potentials on different scalar manifolds and with
different superpotentials. Note that the whole discussion of the present section can also be
immediately generalized to several domains Dp separated by parallel walls Wp,p+1.

4.1 Analysis of the matching conditions

We continue to call Φi and zi, ψi, f i the (super) fields living on D1, i.e. “on the left”, while
we denote Φ̂a and ẑa, ψ̂a, f̂a those living on D2, i.e. “on the right”, see figure 1. Similarly,
we write K and w, resp. K̂ and ŵ for the Kähler potentials and superpotentials.
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To begin with, the total bulk action then is

S =
∫
D1

d4x

(
1
2
[
K(Φi, Φ̄j)

]
D

+
[
w(Φi)

]
F

+
[
w̄(Φ̄i)

]
F̄

)
+
∫
D2

d4x

(
1
2

[
K̂(Φ̂a,

¯̂Φb)
]
D

+
[
ŵ(Φ̂a)

]
F

+
[

¯̂w( ¯̂Φa)
]
F̄

)
. (4.1)

Just as in section 2.4, the susy variation of each of the two terms will produce a boundary
term, but due to the opposite orientation of the boundary of D2 the second term comes with
an opposite sign. Restricting ourselves as before to the supersymmetries satisfying ε̄ = εσn,
these boundary terms are canceled by the susy variation of an appropriate boundary action
Ŝ. As in section 2.5, one finds

Ŝ = −
∫
W

d3x Im
{
Kj

(
f j − i∂nzj

)
+

1
2
Kjkψ

jψk + 2w
}

+
∫
W

d3x Im
{
K̂b

(
f̂ b − i∂nẑb

)
+

1
2
K̂abψ̂

aψ̂b + 2ŵ
}
, (4.2)

and then δ(S + Ŝ)|ε̄=εσn = 0. Again, one can add a boundary term SB that is susy
invariant by itself and, hence, is written as a boundary superspace integral of an arbitrary
real function of all boundary superfields:

SB =
∫
W

d3x

∫
d2θ B

(
φi, φ̄j , φ̂

a, φ̂b

)
. (4.3)

It is rather straightforward to generalize the discussion of supersymmetric boundary con-
ditions to the present situation, resulting in a set of partial differential equations similar
to (3.34). Indeed, the boundary conditions can now be expressed in terms of the boundary
superfields as

φ̄i = Gi
(
φj , φ̂b

)
, φ̂a = Ĝa

(
φj , φ̂b

)
. (4.4)

Vanishing of the boundary terms when varying the action S + Ŝ + SB (and using the
auxiliary field equations of motion) then leads to

∂

∂zi
B
(
zl, Gk, ẑ

c, Ĝd
)

=
i

2
[
Ki

(
zl, Gk

)
−Gm,iKm

(
zl, Gk

)
+ Ĝb,i K̂

b
(
ẑc, Ĝd

)]
∂

∂ẑa
B
(
zl, Gk, ẑ

c, Ĝd
)

=
i

2
[
−K̂a

(
ẑc, Ĝd

)
+ Ĝe,a K̂

e
(
ẑc, Ĝd

)
−Gm,aKm

(
zl, Gk

)]
, (4.5)

where Gm,i ≡ Gm,i(zl, ẑd) ≡ ∂
∂zi
Gm(zl, ẑd), Ĝb,a ≡ Ĝb,a(zl, ẑd) ≡ ∂

∂bza Ĝb(zl, ẑd), etc.
These partial differential equations again have integrability conditions. Taking ∂

∂zj

of the first equation and antisymmetrizing in i and j gives back the condition (3.28).
Similarly, taking ∂

∂zb
of the second equation and antisymmetrizing in a and b gives an

analogous condition on the Ĝ and K̂:

K̂e
b Ĝe,a = K̂e

a Ĝe,b , (4.6)

where it is understood that the arguments are as in (4.5) More interestingly, taking ∂
∂za of

the first equation and subtracting ∂
∂zi

of the second yields

K̂b
aĜb,i = −Kj

iGj,a , (4.7)
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again with all arguments as in (4.5). This equation provides a matching condition between
the Kähler metrics on both sides of the wall. Of course, if the boundary conditions do
not mix the φi and φ̂a, we have Ĝb,i = Gj,a = 0, and the matching condition (4.7) is
trivially satisfied. This corresponds to “purely reflective” boundary conditions and an
“impermeable” wall. In the general case, however, where Gi and Ĝa depend on both, φj

and φ̂b, the condition (4.7) is non-trivial. Note, that we do not get any matching condition
on the superpotential. Thus, we can have completely different superpotentials on both sides
of the wall.

Once more, the boundary conditions ensure conservation of the appropriately defined
total energy and tangential components of total momentum. This can be shown exactly
as before, but now the P ν̂ get contributions from both bulk enrgy-momentum tensors T 0ν̂

(1)

and T 0ν̂
(2) which are the obvious generalizations of (3.52) as well as from the boundary terms

L̂+
∫

d2θ B.

Instead of solving the boundary conditions to express the φ̄i and φ̂a in terms of the φj

and φ̂b as in (4.4), we can choose to solve them to express the φ̄i and φ̂a in terms of the φj

and φ̂b as
φ̄i = Gi

(
φj , φ̂b

)
, φ̂a = Ĝa

(
φj , φ̂b

)
. (4.8)

This would be the natural choice when applying the folding procedure since the latter acts
as parity (combined with a rotation) and hence exchanges dotted and undotted spinors.

Thus by supersymmetry, the folding must map φ̂a to some φ̃a Then, eqs (4.5) would be
replaced, somewhat more symmetrically, by

∂

∂zi
B
(
zl,Gk, Ĝc, ẑd

)
=

i

2

[
Ki

(
zl,Gk

)
− Gm,iKm

(
zl,Gk

)
− Ĝb,i K̂b

(
Ĝc, ẑd

)]
∂

∂ẑa
B
(
zl,Gk, Ĝc, ẑd

)
=

i

2

[
K̂a
(
Ĝc, ẑd

)
− Ĝe,aK̂e

(
Ĝc, ẑd

)
− G ,a

m Km
(
zl,Gk

)]
, (4.9)

where now Gm,i ≡ Gm,i(zl, ẑd) ≡ ∂
∂zi
Gm(zl, ẑd), Ĝb,i ≡ Ĝb,i(zl, ẑd) ≡ ∂

∂zi
Ĝb(zl, ẑd), etc. In

terms of the Gi and Ĝa the integrability, resp. matching condition (4.7) now is replaced by

K̂a
b Ĝb,i = Kj

i G
,a
j . (4.10)

Equations (4.9) can be rewritten in an equivalent but more convenient form as

∂

∂zi

[
B
(
zl,Gk, Ĝc, ẑd

)
+
i

2
K
(
zl,Gk

)
+
i

2
K̂
(
Ĝc, ẑd

)]
= iKi

(
zl,Gk

)
∂

∂ẑa

[
B
(
zl,Gk, Ĝc, ẑd

)
+
i

2
K
(
zl,Gk

)
+
i

2
K̂
(
Ĝc, ẑd

)]
= i K̂a

(
Ĝc, ẑd

)
. (4.11)

Note again that the functions Gi and Ĝa cannot be arbitrary but must be such that eqs (4.8)
are consistent with their hermitian conjugate equations. This implies the generalization of
eq. (3.26), namely

N N∗ = 1 , N =

(
Gi,j G ,bi
Ĝa,j Ĝa,b

)
. (4.12)
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In subsection 3.3.2 we remarked that one could always trivialize the boundary condi-
tions, i.e. find a holomorphic field redefinition such that the boundary conditions become
z̄i = zi. It is still true that, if one did the folding procedure, one could find such a holo-
morphic field redefinition. However, in general it would mix the Φi and the mirror images
of the Φ̂a, i.e. fields living on different domains (before the folding). Physically this makes
no sense and, in the present situation, the “non-diagonal” G ,bi and Ĝa,j carry physical infor-
mation, namely they control the permeability of the wall. If Ĝb,i = G ,aj = 0, the boundary
conditions are “purely reflective” and the analysis reduces to the one of section 3 for two
separate models.

4.2 Examples

Let us now construct some explicit examples of such supersymmetric junctions between
different non-linear sigma models in domains D1 and D2. We will find it convenient to use
the formulation (4.8)–(4.11) of the boundary conditions and matching conditions for the
Kähler metric.

4.2.1 Canonical Kähler potentials and same number of superfields

Let us consider canonical Kähler potentials on both sides of the junction and restrict
ourselves to linear boundary conditions:

Gi
(
zj , ẑb

)
= Gi,j zj + G ,bi ẑb , Ĝa

(
zj , ẑb

)
= Ĝa,j zj + Ĝa,b ẑb , (4.13)

with constant Gi,j ,G ,bi , Ĝa,j , Ĝa,b. Then eqs. (4.9) are satisfied with B = 0, provided

Gi,j = Gj,i , Ĝa,b = Ĝb,a , G ,bi = Ĝb,i (4.14)

which amounts to requiring that the matrix N defined in (4.12) is symmetric (and, hence,
unitary). Of course, eqs. (4.14) also ensure that the integrability conditions like (4.10) are
satisfied. Note again that there is no condition on the superpotentials so that they can
be very different on both sides of the junction. Such was the situation discussed in the
introduction that resulted from integrating out a heavy superfield around its domain wall
solution.

For a single chiral superfield with canonical Kähler potential in each domain, N is a
unitary, symmetric 2× 2 matrix. After appropriate phase rotations of φ and of φ̂, one can
assume that its diagonal elements are real and positive. It is then easy to see that one can
parametrize N in terms of a single real parameter η as

N =
1

1 + η2

(
1− η2 2iη

2iη 1− η2

)
with − 1 ≤ η ≤ 1 . (4.15)

In terms of this parameter η, the present linear boundary conditions can be rewritten
simply as

φ̂− φ̂ = iη
(
φ+ φ

)
, φ− φ = iη

(
φ̂+ φ̂

)
. (4.16)

Clearly, η controls the strength of the interaction between the two domains. In particular,
for the scalars, (4.16) reads Im ẑ = ηRe z and Re ẑ = − 1

η Im z. For η 6= ±1 this implies a
change in the complex structure between the two scalar manifolds.
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4.2.2 Different Kähler potentials

Now, we want to consider examples where the two theories in D1 and D2 have different
Kähler potentials (as well as different superpotentials). To simplify the notation, we will
first restrict ourselves to a single chiral superfield in each domain and write ξ instead of ẑ
for the scalar field in D2. Furthermore, we will consider Kähler potentials of the form

K(z, z̄) = K(zz̄) , K̂(ξ, ξ) = K̂(ξξ) . (4.17)

For example, one can have the standard Kähler potential of CP1 in one domain and a
canonical Kähler potential in the other.

Proceeding in analogy with the example studied in eqs. (3.36) and (3.37), we make the
ansatz

G(z, ξ) = z exp
[
iα ĝ K̂′(ĝ) + 2iH(g)

]
, Ĝ(z, ξ) = ξ exp

[
iα gK′(g) + 2iĤ(ĝ)

]
, (4.18)

where α is some real parameter and g ≡ g(z, ξ) and ĝ ≡ ĝ(z, ξ) are defined as

g = z G(z, ξ) ≡ z z̄ , ĝ = ξĜ(z, ξ) ≡ ξ ξ , (4.19)

as well as B = B(g, ĝ). The differential equations (4.11) relating G, Ĝ and B then read

z
∂

∂z

[
B(g, ĝ) +

i

2
K(g) +

i

2
K̂(ĝ)

]
= i gK′(g)

ξ
∂

∂ξ

[
B(g, ĝ) +

i

2
K(g) +

i

2
K̂(ĝ)

]
= i ĝ K̂′(ĝ) . (4.20)

Using (4.18) one easily finds

z
∂

∂z
K(g) = gK′(g)

[
2 + iα z

∂

∂z

(
ĝ K̂′(ĝ)

)
+ 2iH ′(g) z

∂

∂z
g

]
, (4.21)

as well as a similar relation for ξ ∂
∂ξ
K̂(ĝ). It follows that (4.20) is solved by

B(g, ĝ) =
α

2
gK′(g) ĝ K̂′(ĝ) + F (g) + F̂ (ĝ) , (4.22)

with

F (g) =
∫ g

K′(λ)H ′(λ)λdλ ⇔ H(g) =
∫ g F ′(λ)
K′(λ)

dλ
λ
, (4.23)

and an analogous relation between F̂ (ĝ), K̂′(ĝ) and Ĥ(ĝ). Clearly, the parameter α controls
the permeability of the wall and in the limit α → 0 the above equations reduce to those
describing two non-interacting theories on D1 and D2.

The generalization to several superfields in each domain with different Kähler potentials
of the form

K(zl, z̄k) = K(zj z̄j) , K̂(ξc, ξd) = K̂(ξbξb) (4.24)

is straightforward.
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5 Conclusions

We have presented a quite comprehensive study of rigid unextended supersymmetry on
3 + 1 dimensional space-times with (flat) boundaries.

Since a boundary preserves a 2 + 1 dimensional super-Poincaré algebra, only two out
of the original four supersymmetries can survive. We have reviewed the relevant boundary
superspace and, following [36], identified the minimal boundary term one has to add to
the standard bulk action of the supersymmetric non-linear sigma model to make it off-
shell invariant under these two supersymmetries, even in the presence of the boundary.
No boundary conditions are imposed at this stage. Further, non-minimal supersymmetric
boundary actions SB are boundary superspace integrals of real functions B of the boundary
superfields.

The central point of this paper was to provide a general study of how boundary condi-
tions, arising from the variational principle, are determined as solutions of a certain set of
non-linear (partial) differential equations involving the function B and the first derivatives
of the Kähler potential. These supersymmetric boundary conditions can be complicated
and non-linear themselves. We proved that for any choice of supersymmetric boundary
conditions one can construct an appropriate boundary action SB, and we gave several
explicit examples. We also provided a nice geometric interpretation of a consistency con-
dition, namely that the boundary conditions must define a Lagrangian submanifold of the
Kähler manifold.

As an application, we have generalized these results to the coupling of two different
sigma models, with different Kähler potentials and superpotentials, living in adjacent do-
mains, and worked out the matching conditions, again providing some explicit examples.
This is the kind of situation one expects to obtain as the low-energy effective theory after
integrating out the fluctuations of a heavy superfield around its domain wall solution.

In all cases we have shown that the boundary conditions ensure conservation of the
appropriately modified total energy and tangential components of the total momentum.

An obvious question that we did not address is that of spontaneous susy breaking by
the boundary conditions: 2 + 1 Poincaré invariant vacua would be configurations with the
scalar field expectation values zi0 ≡ 〈zi〉 depending at most on xn and vanishing fermion
fields. To preserve the supersymmetry, they must obey the bulk conditions wj(z̄0) =
i∂nz

j
0 and the susy boundary conditions determined by the boundary potential B. If all

solutions of the bulk conditions are incompatible with the susy boundary conditions we
would have spontaneous susy breaking by the boundary conditions. What we have in mind
is illustrated by the following example: it is easy to imagine a bulk superpotential for a
single chiral superfield such that e.g. |z0(xn = 0)| = 2

√
γ for some γ > 0. This then would

be incompatible with a boundary condition zz̄ = γ, cf. (3.38), which corresponds to a
function B given in (3.39). However, the theory is defined by the triple (K,B,w) and, as
we have seen, this same function B also allows for the other boundary condition z̄ = z.
The latter is compatible with the bulk solution, so that the present example does not yet
lead to spontaneous susy breaking by the boundary term B. We postpone to the future
the study and construction of models that do spontaneously break susy by incompatibility
of the bulk and boundary conditions.
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Furthermore, it would be most interesting to extend the analysis of the present paper to
include gauge fields, extended supersymmetry, and ultimately present an analogous general
analysis for the case of supergravity.
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A Spinor identities

Indices on undotted and dotted spinors are raised and lowered according to

ψα = εαβψβ , ψα = εαβψ
β, ψ̄α̇ = εα̇β̇ψ̄β̇ , ψ̄α̇ = εα̇β̇ψ̄

β̇, (A.1)

where ε12 = −ε21 = 1 and ε12 = −ε21 = −1. The 2 × 2-matrices σµ and σ̄µ are given in
terms of the standard Pauli matrices σi, i = 1, 2, 3 and the identity matrix by

(σµ)αα̇ = (1,−σi)αα̇ , (σ̄µ)α̇α = εα̇β̇εαβ(σµ)ββ̇ = (1,+σi)α̇α. (A.2)

When not written explicitly, undotted indices are always contracted from upper left to
lower right, while dotted indices are contracted from lower left to upper right, e.g.

ψχ = ψαχα , ψ̄χ̄ = ψ̄α̇χ̄
α̇, χσµψ̄ = χασµ

αβ̇
ψ̄β̇, χ̄σ̄µψ = χ̄α̇σ̄

µα̇βψβ . (A.3)

As is well-known, under infinitesimal Lorentz transformations with parameters ωµν

undotted spinors ψ and dotted spinors ψ̄ transform as

δLψα =
i

2
ωµν(iσµν) β

α ψβ , δLψ̄
α̇ =

i

2
ωµν(iσ̄µν)α̇

β̇
ψ̄β̇, (A.4)

where σµν = 1
4(σµσ̄ν − σν σ̄µ) and σ̄µν = 1

4(σ̄µσν − σ̄νσµ). Somewhat more explicitly,
we have i

2ω
µν(iσµν) = i

2(~α + i~ν) · ~σ and i
2ω

µν(iσ̄µν) = i
2(~α − i~ν) · ~σ, where ω0j = νj

(boosts) and ωkl = εkljαj (rotations) with j, k, l = 1, 2, 3. This shows that ψ transforms
in the fundamental representation of SL(2,C) which is the double cover of the proper
orthochronous Lorentz group in 3 + 1 dimensions, and that ψ̄ transforms in the complex
conjugate representation which is different.

If one recalls that the spinors are anticommuting and that (ψαχβ)+ = χ̄βψ̄α it is easy
to show the following identities

ψχ = χψ , ψ̄χ̄ = χ̄ψ̄ , (ψχ)† = ψ̄χ̄

χσµψ̄ = −ψ̄σ̄µχ , χσµσ̄νψ = ψσν σ̄µχ , χ̄σ̄µσνψ̄ = ψ̄σ̄νσµχ̄

(χσµψ̄)† = ψσµχ̄ , (χσµσ̄νψ)† = ψ̄σ̄νσµχ̄ . (A.5)
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The σ and σ̄ matrices satisfy a “Clifford algebra”

σ̄µσν + σ̄νσµ = σµσ̄ν + σν σ̄µ = 2gµν1 , (A.6)

as well as (σj)T = (σj)∗ = iσ2 σ
j iσ2. When evaluating superspace integrals the following

identities are useful

θαθβ= −1
2
εαβ θθ , θαθβ =

1
2
εαβ θθ , θ̄α̇θ̄β̇=

1
2
εα̇β̇ θ̄θ̄ , θ̄α̇θ̄β̇ = −1

2
εα̇β̇ θ̄θ̄ ,

θψ θχ = −1
2
θθ ψχ , θ̄ψ̄ θ̄χ̄ = −1

2
θ̄θ̄ ψ̄χ̄ ,

θσµθ̄ θσν θ̄ =
1
2
θθ θ̄θ̄ gµν , θσµψ̄ θσνχ̄ =

1
2
θθ ψ̄σ̄µσνχ̄ . (A.7)

A general superfield has the expansion

S(x, θ, θ̄) = C + iθχ− iθ̄χ̄+ θσµθ̄vµ +
i

2
θθ(M + iN)− i

2
θ̄θ̄(M − iN)

+i θθ θ̄
(
λ̄+

i

2
σ̄µ∂µχ

)
− i θ̄θ̄ θ

(
λ− i

2
σµ∂µχ̄

)
+

1
2
θθθ̄θ̄

(
D− 1

2
∂µ∂

µC

)
(A.8)

where all component fields depend only on xµ: C ≡ C(x) etc. The superderivatives

Dα =
∂

∂θα
+ iσµ

αβ̇
θ̄β̇

∂

∂xµ
, Dα̇ =

∂

∂θ̄α̇
+ iθβσµβα̇

∂

∂xµ
(A.9)

anticommute with the supersymmetry generators Qβ and Qβ̇ given in (2.2) and allow us
to impose supersymmetric constraints on general superfields. Chiral superfields Φ obey
Dα̇Φ = 0 and thus have the expansion given in eq. (2.1). The susy variation for a general
superfield S(x, θ, θ̄) is [39, 40]

δS ≡ (iεQ+ iε̄Q)S =
∂

∂xµ
(
(iθσµε̄− iεσµθ̄)S

)
+

∂

∂θα
(−εαS) +

∂

∂θ̄α̇
(−ε̄α̇S) , (A.10)

while for a chiral superfield Φ(y, θ) it is given in eq. (2.4).

B Integrating out a heavy superfield around a domain wall

In this appendix we will give some details concerning the example mentioned in the in-
troduction — as a motivation — of integrating out the fluctuations of a heavy superfield
around a domain wall solution. Recall that we consider a simple model consisting of a heavy
chiral superfield ΦH and a light one Φ, with canonical Kähler potential and a superpotential
given by

W (ΦH,Φ) = γ(Φ3
H/3−M2ΦH) + ΦHw2(Φ) + w1(Φ) , w′1(0) = w2(0) = w′2(0) = 0 .

(B.1)
The supersymmetric vacua for the heavy field ΦH, given by ∂W/∂ΦH = 0, then are zH =
±M , where zH denotes the scalar component of ΦH. There also is the domain wall solution

zH(xn) = M tanh(γMxn) , (B.2)
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that interpolates between the two vacua and preserves two out of the initial four super-
symmetries. This domain wall has a width (γM)−1. Its tension (energy per unit area) is
∼ γM3. The excitations around this solution can be seen to have a mass ∼ γM . We will be
interested in the limit where M is fixed and γ →∞. This corresponds to the thin wall limit
and infinitely heavy fluctuations, but also to strong coupling. Nevertheless, we expect to
be able to integrate out these fluctuations of the heavy superfield and obtain an effective
action for the light superfield, preserving the same two supersymmetries. This effective
action should have an effective superpotential W (−M,Φ) = w1(Φ)−Mw2(Φ) + const for
xn < 0 and W (M,Φ) = w1(Φ) + Mw2(Φ) + const for xn > 0. We do not know how
to show this rigorously, since the usual holomorphicity arguments require four preserved
supersymmetries. However, far away from the domain wall at xn = 0, the physics should
look as if the heavy field were in one of its vacua.

The effective superpotential for the field Φ obtained by integrating out the field ΦH

around the vacuum zH = ±M can be obtained exactly in the limit we are interested in.
Holomorphicity together with a non-anomalous (there are no gauge fields here) U(1)R-
charge assignment rM = rΦH

, rw2 = 2 − rΦH
, rγ = 2 − 3rΦH

(and rw1 = 2) restrict the
effective superpotential w±eff(Φ) to be of the form

w±eff(Φ) = Mw2 f±

(
w2(Φ)
γM2

)
+ w1(Φ) . (B.3)

The important point is that the symmetry considerations constrain w±eff to depend on γ

only through the combination γM2. This will allow us to obtain a result at strong coupling
from a weak coupling analysis. Indeed, to determine the function f±(λ) one can consider
perturbation theory of ΦH around the given vacuum where (dropping an additive constant)
W (±M + Φ′H,Φ) = ±γM(Φ′H)2 + γ

3 (Φ′H)3 + Φ′Hw2 ±Mw2 + w1. In the limit γ → 0 with
γM fixed (this is λ ≡ w2

γM2 → 0), the superfield Φ′H becomes a free superfield and doing

the Gaussian integration yields w±eff = ∓ w2
2

4γM ±Mw2 + w1 +O(γ), so that we identify

f±(λ) = ±
(

1− λ

4
+O(λ2)

)
. (B.4)

We are interested in a different limit, however, with M fixed and γ → ∞. Nevertheless,
since this also yields λ ≡ w2

γM2 → 0, one can still use the small λ expansion of f± and
one gets

w±eff(Φ) = w1(Φ)±Mw2(Φ)∓ w2(Φ)2

4γM
+O

(
1
γ2

)
. (B.5)

The leading (finite) terms coincide indeed with the naive result one gets from simply
substituting the classical value ±M for ΦH in W (ΦH,Φ).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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