668 research outputs found

    Genetics of Resistance to the Rust Fungus Coleosporium ipomoeae in Three Species of Morning Glory (Ipomoea)

    Get PDF
    We examined the genetic basis of resistance to the rust pathogen Coleosporium ipomoea in three host species: Ipomoea purpurea, I. hederacea, and I. coccinea (Convolvulaceae). In crosses between resistant and susceptible individuals, second-generation selfed offspring segregated in ratios that did not differ statistically from the 3∶1 ratio indicative of single-gene resistance with the resistant allele dominant. One out of three crosses between resistant individuals from two different populations revealed that resistance loci differed in the two populations, as evidenced by the production of susceptible individuals among the S2 generation. These results suggest that gene-for-gene interactions contribute substantially to the dynamics of coevolution in this natural pathosystem. They also suggest that evolution of resistance to the same pathogen strain may involve different loci in different Ipomoea populations

    Wildfire impact : natural experiment reveals differential short-term changes in soil microbial communities

    Get PDF
    A wildfire which overran a sensor network site provided an opportunity (a natural experiment) to monitor short-term post-fire impacts (immediate and up to three months post-fire) in remnant eucalypt woodland and managed pasture plots. The magnitude of fire-induced changes in soil properties and soil microbial communities was determined by comparing (1) variation in fire-adapted eucalypt woodland vs. pasture grassland at the burnt site; (2) variation at the burnt woodland-pasture sites with variation at two unburnt woodland-pasture sites in the same locality; and (3) temporal variation pre- and post-fire. In the eucalypt woodland, soil ammonium, pH and ROC content increased post-fire, while in the pasture soil, soil nitrate increased post-fire and became the dominant soluble N pool. However, apart from distinct changes in N pools, the magnitude of change in most soil properties was small when compared to the unburnt sites. At the burnt site, bacterial and fungal community structure showed significant temporal shifts between pre- and post-fire periods which were associated with changes in soil nutrients, especially N pools. In contrast, microbial communities at the unburnt sites showed little temporal change over the same period. Bacterial community composition at the burnt site also changed dramatically post-fire in terms of abundance and diversity, with positive impacts on abundance of phyla such as Actinobacteria, Proteobacteria and Firmicutes. Large and rapid changes in soil bacterial community composition occurred in the fire-adapted woodland plot compared to the pasture soil, which may be a reflection of differences in vegetation composition and fuel loading. Given the rapid yet differential response in contrasting land uses, identification of key soil bacterial groups may be useful in assessing recovery of fire-adapted ecosystems, especially as wildfire frequency is predicted to increase with global climate change

    Genetic structure and local adaptation of European wheat yellow rust populations: the role of temperature-specific adaptation

    Get PDF
    Environmental heterogeneity influences coevolution and local adaptation in host–parasite systems. This also concerns applied issues, because the geographic range of parasites may depend on their capacity to adapt to abiotic conditions. We studied temperature-specific adaptation in the wheat yellow/stripe rust pathogen, Puccinia striiformis f.sp. tritici (PST). Using laboratory experiments, PST isolates from northern and southern France were studied for their ability to germinate and to infect bread and durum wheat cultivars over a temperature gradient. Pathogen origin × temperature interactions for infectivity and germination rate suggest local adaptation to high- versus low-temperature regimes in south and north. Competition experiments in southern and northern field sites showed a general competitive advantage of southern over northern isolates. This advantage was particularly pronounced in the southern ‘home’ site, consistent with a model integrating laboratory infectivity and field temperature variation. The stable PST population structure in France likely reflects adaptation to ecological and genetic factors: persistence of southern PST may be due to adaptation to the warmer Mediterranean climate; and persistence of northern PST can be explained by adaptation to commonly used cultivars, for which southern isolates are lacking the relevant virulence genes. Thus, understanding the role of temperature-specific adaptations may help to improve forecast models or breeding programmes

    The effect of environmental heterogeneity on RPW8-mediated resistance to powdery mildews in Arabidopsis thaliana

    Get PDF
    Background and Aims: The biotic and abiotic environment of interacting hosts and parasites may vary considerably over small spatial and temporal scales. It is essential to understand how different environments affect host disease resistance because this determines frequency of disease and, importantly, heterogeneous environments can retard direct selection and potentially maintain genetic variation for resistance in natural populations. Methods: The effect of different temperatures and soil nutrient conditions on the outcome of infection by a pathogen was quantified in Arabidopsis thaliana. Expression levels of a gene conferring resistance to powdery mildews, RPW8, were compared with levels of disease to test a possible mechanism behind variation in resistance. Key Results: Most host genotypes changed from susceptible to resistant across environments with the ranking of genotypes differing between treatments. Transcription levels of RPW8 increased after infection and varied between environments, but there was no tight association between transcription and resistance levels. Conclusions: There is a strong potential for a heterogeneous environment to change the resistance capacity of A. thaliana genotypes and hence the direction and magnitude of selection in the presence of the pathogen. Possible causative links between resistance gene expression and disease resistance are discussed in light of the present results on RPW8

    An evolution of the IR-Radio correlation at very low flux densities?

    Full text link
    In this paper we investigate the radio-MIR correlation at very low flux densities using extremely deep 1.4 GHz sub-arcsecond angular resolution MERLIN+VLA observations of a 8'.5 by 8'.5 field centred upon the Hubble Deep Field North, in conjunction with Spitzer 24micron data. From these results the MIR-radio correlation is extended to the very faint (~microJy) radio source population. Tentatively we detect a small deviation from the correlation at the faintest IR flux densities. We suggest that this small observed change in the gradient of the correlation is the result of a suppression of the MIR emission in faint star-forming galaxies. This deviation potentially has significant implications for using either the MIR or non-thermal radio emission as a star-formation tracer of very low luminosity galaxies.Comment: Accepted for publication in MNRAS, 14 pages, 9 Figures (7 colour), 2 table

    Alteration of the P-wave non-linear dynamics near the onset of paroxysmal atrial fibrillation

    Get PDF
    The analysis of P-wave variability from the electrocardiogram (ECG) has been suggested as an early predictor of the onset of paroxysmal atrial fibrillation (PAP). Hence, a preventive treatment could be used to avoid the loss of normal sinus rhythm, thus minimising health risks and improving the patient's quality of life. In these previous studies the variability of different temporal and morphological P-wave features has been only analysed in a linear fashion. However, the electrophysiological alteration occurring in the atria before the onset of PAF has to be considered as an inherently complex, chaotic and non-stationary process. This work analyses the presence of non-linear dynamics in the P-wave progression before the onset of PAF through the application of the central tendency measure (CTM), which is a non-linear metric summarising the degree of variability in a time series. Two hour-length ECG intervals just before the arrhythmia onset belonging to 46 different PAF patients were analysed. In agreement with the invasively observed inhomogeneous atrial conduction preceding the onset of PAF, CTM for all the considered P-wave features showed higher variability when the arrhythmia was closer to its onset. A diagnostic accuracy around 80% to discern between ECG segments far from PAF and close to PAP was obtained with the CTM of the metrics considered. This result was similar to previous P-wave variability methods based on linear approaches. However, the combination of linear and non-linear methods with a decision tree improved considerably their discriminant ability up to 90%, thus suggesting that both dynamics could coexist at the same time in the fragmented depolarisation of the atria preceding the arrhythmia. (C) 2015 IPEM. Published by Elsevier Ltd. All rights reserved.This work was supported by the projects TEC2014-52250-R from the Spanish Ministry of Economy Competitiveness and PPII-2014-026-P from Junta de Comunidades de Castilla-La Mancha.Martinez, A.; Abasolo, D.; Alcaraz, R.; Rieta, JJ. (2015). Alteration of the P-wave non-linear dynamics near the onset of paroxysmal atrial fibrillation. Medical Engineering and Physics. 37(7):692-697. https://doi.org/10.1016/j.medengphy.2015.03.021S69269737

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page

    The effect of thermal dose on hyperthermia-mediated inhibition of DNA repair through homologous recombination

    Get PDF
    Hyperthermia has a number of biological effects that sensitize tumors to radiotherapy in the range between 40-44 °C. One of these effects is heat-induced degradation of BRCA2 that in turn causes reduced RAD51 focus formation, which results in an attenuation of DNA repair through homologous recombination. Prompted by this molecular insight into how hyperthermia attenuates homologous recombination, we now quantitatively explore time and temperature dynamics of hyperthermia on BRCA2 levels and RAD51 focus formation in cell culture models, and link this to their clonogenic survival capacity after irradiation (0-6 Gy). For treatment temperatures above 41 °C, we found a decrease in cell survival, an increase in sensitization towards irradiation, a decrease of BRCA2 protein levels, and altered RAD51 focus formation. When the temperatures exceeded 43 °C, we found that hyperthermia alone killed more cells directly, and that processes other than homologous recombination were affected by the heat. This study demonstrates that optimal inhibition of HR is achieved by subjecting cells to hyperthermia at 41-43 °C for 30 to 60 minutes. Our data provides a guideline for the clinical application of novel combination treatments that could exploit hyperthermia's attenuation of homologous recombination, such as the combination of hyperthermia with PARP-inhibitors for non-BRCA mutations carriers

    Host plant species affects virulence in monarch butterfly parasites

    Full text link
    1.  Studies have considered how intrinsic host and parasite properties determine parasite virulence, but have largely ignored the role of extrinsic ecological factors in its expression. 2.  We studied how parasite genotype and host plant species interact to determine virulence of the protozoan parasite Ophryocystis elektroscirrha ( McLaughlin & Myers 1970 ) in the monarch butterfly Danaus plexippus L. We infected monarch larvae with one of four parasite genotypes and reared them on two milkweed species that differed in their levels of cardenolides: toxic chemicals involved in predator defence. 3.  Parasite infection, replication and virulence were affected strongly by host plant species. While uninfected monarchs lived equally long on both plant species, infected monarchs suffered a greater reduction in their life spans (55% vs. 30%) on the low-cardenolide vs. the high-cardenolide host plant. These life span differences resulted from different levels of parasite replication in monarchs reared on the two plant species. 4.  The virulence rank order of parasite genotypes was unaffected by host plant species, suggesting that host plant species affected parasite genotypes similarly, rather than through complex plant species–parasite genotype interactions. 5.  Our results demonstrate that host ecology importantly affects parasite virulence, with implications for host–parasite dynamics in natural populations. Journal of Animal Ecology (2007) doi: 10.1111/j.1365-2656.2007.01305.xPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72199/1/j.1365-2656.2007.01305.x.pd

    Computing optimal coalition structures in polynomial time

    Get PDF
    The optimal coalition structure determination problem is in general computationally hard. In this article, we identify some problem instances for which the space of possible coalition structures has a certain form and constructively prove that the problem is polynomial time solvable. Specifically, we consider games with an ordering over the players and introduce a distance metric for measuring the distance between any two structures. In terms of this metric, we define the property of monotonicity, meaning that coalition structures closer to the optimal, as measured by the metric, have higher value than those further away. Similarly, quasi-monotonicity means that part of the space of coalition structures is monotonic, while part of it is non-monotonic. (Quasi)-monotonicity is a property that can be satisfied by coalition games in characteristic function form and also those in partition function form. For a setting with a monotonic value function and a known player ordering, we prove that the optimal coalition structure determination problem is polynomial time solvable and devise such an algorithm using a greedy approach. We extend this algorithm to quasi-monotonic value functions and demonstrate how its time complexity improves from exponential to polynomial as the degree of monotonicity of the value function increases. We go further and consider a setting in which the value function is monotonic and an ordering over the players is known to exist but ordering itself is unknown. For this setting too, we prove that the coalition structure determination problem is polynomial time solvable and devise such an algorithm
    • …
    corecore