130 research outputs found
Surface topography of hydroxyapatite affects ROS17/2.8 cells response
Hydroxyapatite (HA) has been used in orthopedic, dental, and maxillofacial surgery as a bone substitute.
The aim of this investigation was to study the effect of surface topography produced by the presence of microporosity on cell response, evaluating: cell attachment, cell morphology, cell proliferation, total protein content, and alkaline phosphatase (ALP) activity. HA discs with different percentages of microporosity (< 5%, 15%, and 30%) were confected by means of the combination of uniaxial powder pressing and different sintering conditions. ROS17/2.8 cells were cultured
on HA discs. For the evaluation of attachment, cells were cultured for two hours. Cell morphology was evaluated
after seven days. After seven and fourteen days, cell proliferation, total protein content, and ALP activity were measured. Data were compared by means of ANOVA and Duncan’s multiple range test, when appropriate. Cell attachment (p = 0.11) and total protein content (p = 0.31) were not affected by surface topography. Proliferation after 7 and 14 days (p = 0.0007 and p = 0.003, respectively), and ALP activity (p = 0.0007) were both significantly decreased by the most irregular surface (HA30). These results suggest that initial cell events were not affected by surface topography, while surfaces with more regular topography, as those present in HA with 15% or less of microporosity, favored intermediary and final events such as cell proliferation and ALP activity
Autistic behavior in boys with fragile X syndrome: social approach and HPA-axis dysfunction
The primary goal of this study was to examine environmental and neuroendocrine factors that convey increased risk for elevated autistic behavior in boys with Fragile X syndrome (FXS). This study involves three related analyses: (1) examination of multiple dimensions of social approach behaviors and how they vary over time, (2) investigation of mean levels and modulation of salivary cortisol levels in response to social interaction, and (3) examination of the relationship of social approach and autistic behaviors to salivary cortisol. Poor social approach and elevated baseline and regulation cortisol are discernible traits that distinguish boys with FXS and ASD from boys with FXS only and from typically developing boys. In addition, blunted cortisol change is associated with increased severity of autistic behaviors only within the FXS and ASD group. Boys with FXS and ASD have distinct behavioral and neuroendocrine profiles that differentiate them from those with FXS alone and typically developing boys
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Repetitive Behavior in Rubinstein–Taybi Syndrome:Parallels with Autism Spectrum Phenomenology
Syndrome specific repetitive behavior profiles have been described previously. A detailed profile is absent for Rubinstein–Taybi syndrome (RTS). The Repetitive Behaviour Questionnaire and Social Communication Questionnaire were completed for children and adults with RTS (N = 87), Fragile-X (N = 196) and Down (N = 132) syndromes, and individuals reaching cut-off for autism spectrum disorder (N = 228). Total and matched group analyses were conducted. A phenotypic profile of repetitive behavior was found in RTS. The majority of behaviors in RTS were not associated with social-communication deficits or degree of disability. Repetitive behavior should be studied at a fine-grained level. A dissociation of the triad of impairments might be evident in RTS
Elevated Levels of the Vesicular Monoamine Transporter and a Novel Repetitive Behavior in the Drosophila Model of Fragile X Syndrome
Fragile X Syndrome (FXS) is characterized by mental impairment and autism in humans, and it often features hyperactivity and repetitive behaviors. The mechanisms for the disease, however, remain poorly understood. Here we report that the dfmr1 mutant in the Drosophila model of FXS grooms excessively, which may be regulated differentially by two signaling pathways. Blocking metabotropic glutamate receptor signaling enhances grooming in dfmr1 mutant flies, whereas blocking the vesicular monoamine transporter (VMAT) suppresses excessive grooming. dfmr1 mutant flies also exhibit elevated levels of VMAT mRNA and protein. These results suggest that enhanced monoamine signaling correlates with repetitive behaviors and hyperactivity associated with FXS
Teasing apart the heterogeneity of autism: Same behavior, different brains in toddlers with fragile X syndrome and autism
To examine brain volumes in substructures associated with the behavioral features of children with FXS compared to children with idiopathic autism and controls. A cross-sectional study of brain substructures was conducted at the first time-point as part of an ongoing longitudinal MRI study of brain development in FXS. The study included 52 boys between 18–42 months of age with FXS and 118 comparison children (boys with autism-non FXS, developmental-delay, and typical development). Children with FXS and autistic disorder had substantially enlarged caudate volume and smaller amygdala volume; whereas those children with autistic disorder without FXS (i.e., idiopathic autism) had only modest enlargement in their caudate nucleus volumes but more robust enlargement of their amygdala volumes. Although we observed this double dissociation among selected brain volumes, no significant differences in severity of autistic behavior between these groups were observed. This study offers a unique examination of early brain development in two disorders, FXS and idiopathic autism, with overlapping behavioral features, but two distinct patterns of brain morphology. We observed that despite almost a third of our FXS sample meeting criteria for autism, the profile of brain volume differences for children with FXS and autism differed from those with idiopathic autism. These findings underscore the importance of addressing heterogeneity in studies of autistic behavior
Mechanical Strain Regulates Osteoblast Proliferation through Integrin-Mediated ERK Activation
Mechanical strain plays a critical role in the proliferation, differentiation and maturation of bone cells. As mechanical receptor cells, osteoblasts perceive and respond to stress force, such as those associated with compression, strain and shear stress. However, the underlying molecular mechanisms of this process remain unclear. Using a four-point bending device, mouse MC3T3-E1 cells was exposed to mechanical tensile strain. Cell proliferation was determined to be most efficient when stimulated once a day by mechanical strain at a frequency of 0.5 Hz and intensities of 2500 µε with once a day, and a periodicity of 1 h/day for 3 days. The applied mechanical strain resulted in the altered expression of 1992 genes, 41 of which are involved in the mitogen-activated protein kinase (MAPK) signaling pathway. Activation of ERK by mechanical strain promoted cell proliferation and inactivation of ERK by PD98059 suppressed proliferation, confirming that ERK plays an important role in the response to mechanical strain. Furthermore, the membrane-associated receptors integrin β1 and integrin β5 were determined to regulate ERK activity and the proliferation of mechanical strain-treated MC3T3-E1 cells in opposite ways. The knockdown of integrin β1 led to the inhibition of ERK activity and cell proliferation, whereas the knockdown of integrin β5 led to the enhancement of both processes. This study proposes a novel mechanism by which mechanical strain regulates bone growth and remodeling
Genetic-Background Modulation of Core and Variable Autistic-Like Symptoms in Fmr1 Knock-Out Mice
International audienc
FMR1 premutation and full mutation molecular mechanisms related to autism
Fragile X syndrome (FXS) is caused by an expanded CGG repeat (>200 repeats) in the 5′ un-translated portion of the fragile X mental retardation 1 gene (FMR1) leading to a deficiency or absence of the FMR1 protein (FMRP). FMRP is an RNA-binding protein that regulates the translation of a number of other genes that are important for synaptic development and plasticity. Furthermore, many of these genes, when mutated, have been linked to autism in the general population, which may explain the high comorbidity that exists between FXS and autism spectrum disorders (ASD). Additionally, premutation repeat expansions (55 to 200 CGG repeats) may also give rise to ASD through a different molecular mechanism that involves a direct toxic effect of FMR1 mRNA. It is believed that RNA toxicity underlies much of the premutation-related involvement, including developmental concerns like autism, as well as neurodegenerative issues with aging such as the fragile X-associated tremor ataxia syndrome (FXTAS). RNA toxicity can also lead to mitochondrial dysfunction, which is common in older premutation carriers both with and without FXTAS. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in idiopathic autism. Research regarding dysregulation of neurotransmitter systems caused by the lack of FMRP in FXS, including metabotropic glutamate receptor 1/5 (mGluR1/5) pathway and GABA pathways, has led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism
Syndromic Autism: progressing beyond current levels of description
Genetic syndrome groups at high risk of autism comorbidity, like Down syndrome and fragile X syndrome, have been presented as useful models for understanding risk and protective factors involved in the emergence of autistic traits. Yet despite reaching clinical thresholds, these ‘syndromic’ forms of autism appear to differ in significant ways from the idiopathic or ‘non-syndromic’ autism profile. We explore alternative mechanistic explanations for these differences and propose a developmental interpretation of syndromic autism that takes into account the character of the genetic disorder. This interpretation anticipates syndrome-specific autism phenotypes, since the neurocognitive and behavioural expression of the autism is coloured by syndromically defined atypicalities. To uncover the true nature of comorbidities and of autism per se, we argue that it is key to extend definitions of autism to include the perceptual and neurocognitive characteristics of the disorder and then apply this multilevel conceptualization to the study of syndromic autism profiles
- …