3,876 research outputs found
Intrachromosomal excision of a hybrid Ds element induces large genomic deletions in Arabidopsis
Transposon activity is known to cause chromosome rearrangements in the host genome. Surprisingly, extremely little is known about Dissociation (Ds)-induced chromosome rearrangements in Arabidopsis, where Ds is intensively used for insertional mutagenesis. Here, we describe three Arabidopsis mutants with reduced fertility and propose that excision of a hybrid Ds element induced a large genomic deletion flanking Ds. In the mutants anat and haumea, the deletion mechanism consists of a local Ds transposition from replicated into unreplicated DNA followed by Ds excision, where one end of the newly transposed element and one end of the Ds transposon at the donor site served as substrate for transposase. Excision of this hybrid element reminiscent of a macrotransposon leads to loss of the chromosomal piece located between the two ends, including one full Ds element and the flanking genomic sequence. This mechanism was found to be responsible for several other deletions and occurs at a genetically trackable frequency. Thus, it could be applied to efficiently generate deletions of various sizes in the vicinity of any existing Ds element present in the genome. In the mutant tons missing, a mechanism that involves endogenous repetitive sequences caused a large flanking deletion at a position unlinked to the starter locus. Our study of Ds transposition in Arabidopsis revealed previously undescribed mechanisms that lead to large genomic deletions flanking Ds elements, which may contribute to genome dynamics and evolution
Global fire activity patterns (1996─2006) and climatic influence: an analysis using the World Fire Atlas
Vegetation fires have been acknowledged as an environmental process of global scale, which affects the chemical composition of the troposphere, and has profound ecological and climatic impacts. However, considerable uncertainty remains, especially concerning intra and inter-annual variability of fire incidence. The main goals of our global-scale study were to characterise spatial-temporal patterns of fire activity, to identify broad geographical areas with similar vegetation fire dynamics, and to analyse the relationship between fire activity and the El Niño-Southern Oscillation. This study relies on 10 years (mid 1996–mid 2006) of screened European Space Agency World Fire Atlas (WFA) data, obtained from Along Track Scanning Radiometer (ATSR) and Advanced ATSR (AATSR) imagery. Empirical Orthogonal Function analysis was used to reduce the dimensionality of the dataset. Regions of homogeneous fire dynamics were identified with cluster analysis, and interpreted based on their eco-climatic characteristics. The impact of 1997–1998 El Niño is clearly dominant over the study period, causing increased fire activity in a variety of regions and ecosystems, with variable timing. Overall, this study provides the first global decadal assessment of spatial-temporal fire variability and confirms the usefulness of the screened WFA for global fire ecoclimatology research
Virtual patients design and its effect on clinical reasoning and student experience : a protocol for a randomised factorial multi-centre study
Background
Virtual Patients (VPs) are web-based representations of realistic clinical cases. They are proposed as being an optimal method for teaching clinical reasoning skills. International standards exist which define precisely what constitutes a VP. There are multiple design possibilities for VPs, however there is little formal evidence to support individual design features. The purpose of this trial is to explore the effect of two different potentially important design features on clinical reasoning skills and the student experience. These are the branching case pathways (present or absent) and structured clinical reasoning feedback (present or absent).
Methods/Design
This is a multi-centre randomised 2x2 factorial design study evaluating two independent variables of VP design, branching (present or absent), and structured clinical reasoning feedback (present or absent).The study will be carried out in medical student volunteers in one year group from three university medical schools in the United Kingdom, Warwick, Keele and Birmingham. There are four core musculoskeletal topics. Each case can be designed in four different ways, equating to 16 VPs required for the research. Students will be randomised to four groups, completing the four VP topics in the same order, but with each group exposed to a different VP design sequentially. All students will be exposed to the four designs. Primary outcomes are performance for each case design in a standardized fifteen item clinical reasoning assessment, integrated into each VP, which is identical for each topic. Additionally a 15-item self-reported evaluation is completed for each VP, based on a widely used EViP tool. Student patterns of use of the VPs will be recorded.
In one centre, formative clinical and examination performance will be recorded, along with a self reported pre and post-intervention reasoning score, the DTI. Our power calculations indicate a sample size of 112 is required for both primary outcomes
Magnetic Fields of Spherical Compact Stars in Braneworld
We study the dipolar magnetic field configuration in dependence on brane
tension and present solutions of Maxwell equations in the internal and external
background spacetime of a magnetized spherical star in a Randall-Sundrum II
type braneworld. The star is modelled as sphere consisting of perfect highly
magnetized fluid with infinite conductivity and frozen-in dipolar magnetic
field. With respect to solutions for magnetic fields found in the Schwarzschild
spacetime brane tension introduces enhancing corrections both to the interior
and the exterior magnetic field. These corrections could be relevant for the
magnetic fields of magnetized compact objects as pulsars and magnetars and may
provide the observational evidence for the brane tension through the
modification of formula for magneto-dipolar emission which gives amplification
of electromagnetic energy loss up to few orders depending on the value of the
brane tension.Comment: 11 pages, 5 figures, 1 tabl
Period-doubling bifurcation in strongly anisotropic Bianchi I quantum cosmology
We solve the Wheeler-DeWitt equation for the minisuperspace of a cosmological
model of Bianchi type I with a minimally coupled massive scalar field as
source by generalizing the calculation of Lukash and Schmidt [1]. Contrarily to
other approaches we allow strong anisotropy. Combining analytical and numerical
methods, we apply an adiabatic approximation for , and as new feature we
find a period-doubling bifurcation. This bifurcation takes place near the
cosmological quantum boundary, i.e., the boundary of the quasiclassical region
with oscillating -function where the WKB-approximation is good. The
numerical calculations suggest that such a notion of a ``cosmological quantum
boundary'' is well-defined, because sharply beyond that boundary, the
WKB-approximation is no more applicable at all. This result confirms the
adequateness of the introduction of a cosmological quantum boundary in quantum
cosmology.Comment: Latest update of the paper at
http://www.physik.fu-berlin.de/~mbach/publics.html#
Hahn's Symmetric Quantum Variational Calculus
We introduce and develop the Hahn symmetric quantum calculus with
applications to the calculus of variations. Namely, we obtain a necessary
optimality condition of Euler-Lagrange type and a sufficient optimality
condition for variational problems within the context of Hahn's symmetric
calculus. Moreover, we show the effectiveness of Leitmann's direct method when
applied to Hahn's symmetric variational calculus. Illustrative examples are
provided.Comment: This is a preprint of a paper whose final and definite form will
appear in the international journal Numerical Algebra, Control and
Optimization (NACO). Paper accepted for publication 06-Sept-201
The Herschel Exploitation of Local Galaxy Andromeda (HELGA) II: Dust and Gas in Andromeda
We present an analysis of the dust and gas in Andromeda, using Herschel
images sampling the entire far-infrared peak. We fit a modified-blackbody model
to ~4000 quasi-independent pixels with spatial resolution of ~140pc and find
that a variable dust-emissivity index (beta) is required to fit the data. We
find no significant long-wavelength excess above this model suggesting there is
no cold dust component. We show that the gas-to-dust ratio varies radially,
increasing from ~20 in the center to ~70 in the star-forming ring at 10kpc,
consistent with the metallicity gradient. In the 10kpc ring the average beta is
~1.9, in good agreement with values determined for the Milky Way (MW). However,
in contrast to the MW, we find significant radial variations in beta, which
increases from 1.9 at 10kpc to ~2.5 at a radius of 3.1kpc and then decreases to
1.7 in the center. The dust temperature is fairly constant in the 10kpc ring
(ranging from 17-20K), but increases strongly in the bulge to ~30K. Within
3.1kpc we find the dust temperature is highly correlated with the 3.6 micron
flux, suggesting the general stellar population in the bulge is the dominant
source of dust heating there. At larger radii, there is a weak correlation
between the star formation rate and dust temperature. We find no evidence for
'dark gas' in M31 in contrast to recent results for the MW. Finally, we
obtained an estimate of the CO X-factor by minimising the dispersion in the
gas-to-dust ratio, obtaining a value of (1.9+/-0.4)x10^20 cm^-2 [K kms^-1]^-1.Comment: 19 pages, 18 figures. Submitted to ApJ April 2012; Accepted July 201
Comparison of embedded and added motor imagery training in patients after stroke: Study protocol of a randomised controlled pilot trial using a mixed methods approach
Copyright @ 2009 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Two different approaches have been adopted when applying motor imagery (MI) to stroke patients. MI can be conducted either added to conventional physiotherapy or integrated within therapy sessions. The proposed study aims to compare the efficacy of embedded MI to an added MI intervention. Evidence from pilot studies reported in the literature suggests that both approaches can improve performance of a complex motor skill involving whole body movements, however, it remains to be demonstrated, which is the more effective one.Methods/Design: A single blinded, randomised controlled trial (RCT) with a pre-post intervention design will be carried out. The study design includes two experimental groups and a control group (CG). Both experimental groups (EG1, EG2) will receive physical practice of a clinical relevant motor task ('Going down, laying on the floor, and getting up again') over a two week intervention period: EG1 with embedded MI training, EG2 with MI training added after physiotherapy. The CG will receive standard physiotherapy intervention and an additional control intervention not related to MI.The primary study outcome is the time difference to perform the task from pre to post-intervention. Secondary outcomes include level of help needed, stages of motor task completion, degree of motor impairment, balance ability, fear of falling measure, motivation score, and motor imagery ability score. Four data collection points are proposed: twice during baseline phase, once following the intervention period, and once after a two week follow up. A nested qualitative part should add an important insight into patients' experience and attitudes towards MI. Semi-structured interviews of six to ten patients, who participate in the RCT, will be conducted to investigate patients' previous experience with MI and their expectations towards the MI intervention in the study. Patients will be interviewed prior and after the intervention period.Discussion: Results will determine whether embedded MI is superior to added MI. Findings of the semi-structured interviews will help to integrate patient's expectations of MI interventions in the design of research studies to improve practical applicability using MI as an adjunct therapy technique
Low genetic variability, female-biased dispersal and high movement rates in an urban population of Eurasian badgersMeles meles
1.
Urban and rural populations of animals can differ in their behaviour, both in order to meet their
ecological requirements and due to the constraints imposed by different environments. The study
of urban populations can therefore offer useful insights into the behavioural flexibility of a species as
a whole, as well as indicating how the species in question adapts to a specifically urban environment.
2.
The genetic structure of a population can provide information about social structure and
movement patterns that is difficult to obtain by other means. Using non-invasively collected hair
samples, we estimated the population size of Eurasian badgers
Meles meles
in the city of Brighton,
England, and calculated population-specific parameters of genetic variability and sex-specific rates
of outbreeding and dispersal.
3.
Population density was high in the context of badger densities reported throughout their range.
This was due to a high density of social groups rather than large numbers of individuals per group.
4.
The allelic richness of the population was low compared with other British populations. However,
the rate of extra-group paternity and the relatively frequent (mainly temporary) intergroup movements
suggest that, on a local scale, the population was outbred. Although members of both sexes visited
other groups, there was a trend for more females to make intergroup movements.
5.
The results reveal that urban badgers can achieve high densities and suggest that while some
population parameters are similar between urban and rural populations, the frequency of intergroup
movements is higher among urban badgers. In a wider context, these results demonstrate the
ability of non-invasive genetic sampling to provide information about the population density, social
structure and behaviour of urban wildlife
The holographic principle
There is strong evidence that the area of any surface limits the information
content of adjacent spacetime regions, at 10^(69) bits per square meter. We
review the developments that have led to the recognition of this entropy bound,
placing special emphasis on the quantum properties of black holes. The
construction of light-sheets, which associate relevant spacetime regions to any
given surface, is discussed in detail. We explain how the bound is tested and
demonstrate its validity in a wide range of examples.
A universal relation between geometry and information is thus uncovered. It
has yet to be explained. The holographic principle asserts that its origin must
lie in the number of fundamental degrees of freedom involved in a unified
description of spacetime and matter. It must be manifest in an underlying
quantum theory of gravity. We survey some successes and challenges in
implementing the holographic principle.Comment: 52 pages, 10 figures, invited review for Rev. Mod. Phys; v2:
reference adde
- …
