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Abstract. We introduce and develop the Hahn symmetric quantum calculus

with applications to the calculus of variations. Namely, we obtain a necessary
optimality condition of Euler–Lagrange type and a sufficient optimality condi-

tion for variational problems within the context of Hahn’s symmetric calculus.

Moreover, we show the effectiveness of Leitmann’s direct method when applied
to Hahn’s symmetric variational calculus. Illustrative examples are provided.

1. Introduction. Due to its many applications, quantum operators are recently
subject to an increase number of investigations [24–26]. The use of quantum differ-
ential operators, instead of classical derivatives, is useful because they allow to deal
with sets of nondifferentiable functions [4, 10]. Applications include several fields
of physics, such as cosmic strings and black holes [27], quantum mechanics [12,29],
nuclear and high energy physics [18], just to mention a few. In particular, the
q-symmetric quantum calculus has applications in quantum mechanics [17].

In 1949, Hahn introduced his quantum difference operator [13], which is a gen-
eralization of the quantum q-difference operator defined by Jackson [14]. However,
only in 2009, Aldwoah [1] defined the inverse of Hahn’s difference operator, and short
after, Malinowska and Torres [24] introduced and investigated the Hahn quantum
variational calculus. For a deep understanding of quantum calculus, we refer the
reader to [2, 5, 6, 11,15,16] and references therein.

For a fixed q ∈ ]0, 1[ and an ω ≥ 0, we introduce here the Hahn symmetric

difference operator of function f at point t 6= ω

1− q
by

D̃q,ω [y] (t) =
f (qt+ ω)− f

(
q−1 (t− ω)

)
(q − q−1) t+ (1 + q−1)ω

.
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Our main aim is to establish a necessary optimality condition and a sufficient opti-
mality condition for the Hahn symmetric variational problem

L(y) =

∫ b

a

L
(
t, yσ (t) , D̃q,ω [y] (t)

)
d̃q,ωt −→ extremize

y ∈ Y1
(

[a, b]q,ω ,R
)

y (a) = α, y (b) = β,

(P)

where α and β are fixed real numbers, and extremize means maximize or minimize.
Problem (P) will be clear and precise after definitions of Section 2. We assume that
the Lagrangian L satisfies the following hypotheses:

(H1) (u, v)→ L (t, u, v) is a C1
(
R2,R

)
function for any t ∈ I;

(H2) t → L
(
t, yσ (t) , D̃q,ω [y] (t)

)
is continuous at ω0 for any admissible function

y;

(H3) functions t → ∂i+2L
(
t, yσ (t) , D̃q,ω [y] (t)

)
belong to Y1

(
[a, b]q,ω ,R

)
for all

admissible y, i = 0, 1;

where I is an interval of R containing ω0 :=
ω

1− q
, a, b ∈ I, a < b, and ∂jL denotes

the partial derivative of L with respect to its jth argument.
In Section 2 we introduce the necessary definitions and prove some basic results

for the Hahn symmetric calculus. In Section 3 we formulate and prove our main re-
sults for the Hahn symmetric variational calculus. New results include a necessary
optimality condition (Theorem 3.8) and a sufficient optimality condition (Theo-
rem 3.10) to problem (P). In Section 3.3 we show that Leitmann’s direct method
can also be applied to variational problems within Hahn’s symmetric variational cal-
culus. Leitmann introduced his direct method in the sixties of the 20th century [19],
and the approach has recently proven to be universal: see, e.g., [3, 8, 9, 20–23,28].

2. Hahn’s symmetric calculus. Let q ∈ ]0, 1[ and ω ≥ 0 be real fixed numbers.
Throughout the text, we make the assumption that I is an interval (bounded or

unbounded) of R containing ω0 :=
ω

1− q
. We denote by Iq,ω the set Iq,ω := qI+ω :=

{qt+ ω : t ∈ I}. Note that Iq,ω ⊆ I and, for all t ∈ Iq,ω, one has q−1 (t− ω) ∈ I.
For k ∈ N0,

[k]q :=
1− qk

1− q
.

Definition 2.1. Let f be a real function defined on I. The Hahn symmetric
difference operator of f at a point t ∈ Iq,ω\ {ω0} is defined by

D̃q,ω [f ] (t) =
f (qt+ ω)− f

(
q−1 (t− ω)

)
(q − q−1) t+ (1 + q−1)ω

,

while D̃q,ω [f ] (ω0) := f ′ (ω0), provided f is differentiable at ω0 (in the classical

sense). We call to D̃q,ω [f ] the Hahn symmetric derivative of f .

Remark 1. If ω = 0, then the Hahn symmetric difference operator D̃q,ω coincides

with the q-symmetric difference operator D̃q: if t 6= 0, then

D̃q,0 [f ] (t) =
f (qt)− f

(
q−1t

)
(q − q−1) t

=: D̃q [f ] (t) ;
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for t = 0 and f differentiable at 0, D̃q,0 [f ] (0) = f ′ (0) =: D̃q [f ] (0).

Remark 2. If ω > 0 and we let q → 1 in Definition 2.1, then we obtain the well
known symmetric difference operator D̃ω:

D̃ω [f ] (t) =
f (t+ ω)− f (t− ω)

2ω
.

Remark 3. If f is differentiable at t ∈ Iq,ω in the classical sense, then

lim
(q,ω)→(1,0)

D̃q,ω [f ] (t) = f ′ (t) .

In what follows we make use of the operator σ defined by σ (t) := qt+ ω, t ∈ I.
Note that the inverse operator of σ, σ−1, is defined by σ−1 (t) := q−1 (t− ω).
Moreover, Aldwoah [1, Lemma 6.1.1] proved the following useful result.

Lemma 2.2 ( [1]). Let k ∈ N and t ∈ I. Then,

1. σk (t) = σ ◦ σ ◦ · · · ◦ σ︸ ︷︷ ︸
k times

(t) = qkt+ ω [k]q;

2.
(
σk (t)

)−1
= σ−k (t) = q−k

(
t− ω [k]q

)
.

Furthermore, {σk (t)}∞k=1 is a decreasing (resp. an increasing) sequence in k when
t > ω0 (resp. t < ω0) with

ω0 = inf
k∈N

σk(t)

(
resp. ω0 = sup

k∈N
σk(t)

)
.

The sequence {σ−k(t)}∞k=1 is increasing (resp. decreasing) when t > ω0 (resp. t <
ω0) with

∞ = sup
k∈N

σ−k(t)

(
resp. −∞ = inf

k∈N
σ−k(t)

)
.

For simplicity of notation, we write f (σ (t)) := fσ (t).

Remark 4. With above notations, if t ∈ Iq,ω\ {ω0}, then the Hahn symmetric
difference operator of f at point t can be written as

D̃q,ω [f ] (t) =
fσ (t)− fσ−1

(t)

σ (t)− σ−1 (t)
.

Lemma 2.3. Let n ∈ N0 and t ∈ I. Then,

σn+1 (t)− σn−1 (t) = qn
(
σ (t)− σ−1 (t)

)
,

where σ0 ≡ id is the identity function.

Proof. The equality follows by direct calculations:

σn+1(t)− σn−1 (t) = qn+1t+ ω [n+ 1]q − q
n−1t− ω [n− 1]q

= qn
(
q − q−1

)
t+ ω

(
qn + qn−1

)
= qn

(
qt+ ω − q−1t+ q−1ω

)
= qn

(
σ (t)− σ−1 (t)

)
.

The Hahn symmetric difference operator has the following properties.

Theorem 2.4. Let α, β ∈ R and t ∈ Iq,ω. If f and g are Hahn symmetric differ-
entiable on I, then
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1. D̃q,ω [αf + βg] (t) = αD̃q,ω [f ] (t) + βD̃q,ω [g] (t);

2. D̃q,ω [fg] (t) = D̃q,ω [f ] (t) gσ (t) + fσ
−1

(t) D̃q,ω [g] (t);

3. D̃q,ω

[
f

g

]
(t) =

D̃q,ω [f ] (t) gσ
−1

(t)− fσ−1

(t) D̃q,ω [g] (t)

gσ (t) gσ−1 (t)
if gσ (t) gσ

−1

(t) 6= 0;

4. D̃q,ω [f ] ≡ 0 if, and only if, f is constant on I.

Proof. For t = ω0 the equalities are trivial (note that σ(ω0) = ω0 = σ−1(ω0)). We
do the proof for t 6= ω0:

1.

D̃q,ω [αf + βg] (t) =
(αf + βg)

σ
(t)− (αf + βg)

σ−1

(t)

σ (t)− σ−1 (t)

= α
fσ (t)− fσ−1

(t)

σ (t)− σ−1 (t)
+ β

gσ (t)− gσ−1

(t)

σ (t)− σ−1 (t)

= αD̃q,ω [f ] (t) + βD̃q,ω [g] (t) .

2.

D̃q,ω [fg] (t) =
(fg)

σ
(t)− (fg)

σ−1

(t)

σ (t)− σ−1 (t)

=
fσ (t)− fσ−1

(t)

σ (t)− σ−1 (t)
gσ (t) + fσ

−1

(t)
gσ (t)− gσ−1

(t)

σ (t)− σ−1 (t)

= D̃q,ω [f ] (t) gσ (t) + fσ
−1

(t) D̃q,ω [g] (t) .

3. Because

D̃q,ω

[
1

g

]
(t) =

1
gσ(t) −

1

gσ−1 (t)

σ (t)− σ−1 (t)

= − 1

gσ (t) gσ−1 (t)

gσ (t)− gσ−1

(t)

σ (t)− σ−1 (t)

= − D̃q,ω [g] (t)

gσ (t) gσ−1 (t)
,

one has

D̃q,ω

[
f

g

]
(t) = D̃q,ω

[
f

1

g

]
(t)

= D̃q,ω [f ] (t)
1

gσ (t)
+ fσ

−1

(t) D̃q,ω

[
1

g

]
(t)

=
D̃q,ω [f ] (t)

gσ (t)
− fσ

−1

(t)
D̃q,ω [g] (t)

gσ (t) gσ−1 (t)

=
D̃q,ω [f ] (t) gσ

−1

(t)− fσ−1

(t) D̃q,ω [g] (t)

gσ (t) gσ−1 (t)
.

4. If f is constant on I, then it is clear that D̃q,ω [f ] ≡ 0. Suppose now that

D̃q,ω [f ] ≡ 0. Then, for each t ∈ I,
(
D̃q,ω [f ]

)σ
(t) = 0 and, therefore, f (t) =

fσ
2

(t). Hence, f (t) = fσ
2

(t) = · · · = fσ
2n

(t) for each n ∈ N and t ∈
I. Because limn→+∞ f (t) = limn→+∞ fσ

2n

(t), limn→+∞ σ2n (t) = ω0 (by
Lemma 2.2), and f is continuous at ω0, then f (t) = f (ω0) for all t ∈ I.
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Lemma 2.5. For t ∈ I one has D̃q,ω [fσ] (t) = qD̃q,ω [f ] (σ (t)).

Proof. For each t ∈ I\{ω0} we have

D̃q,ω [fσ] (t) =
fσ

2

(t)− f (t)

σ (t)− σ−1 (t)

and

D̃q,ω [f ] (σ (t)) =
fσ

2

(t)− f (t)

σ2 (t)− t

=
fσ

2

(t)− f (t)

q (σ (t)− σ−1 (t))
(see Lemma 2.3).

We conclude that D̃q,ω [fσ] (t) = qD̃q,ω [f ] (σ (t)). Finally, the intended result fol-

lows from the fact that D̃q,ω [fσ] (ω0) = qD̃q,ω [f ] (ω0).

Definition 2.6. Let a, b ∈ I and a < b. For f : I → R the Hahn symmetric integral
of f from a to b is given by∫ b

a

f (t) d̃q,ωt =

∫ b

ω0

f (t) d̃q,ωt−
∫ a

ω0

f (t) d̃q,ωt,

where ∫ x

ω0

f (t) d̃q,ωt =
(
σ−1 (x)− σ (x)

) +∞∑
n=0

q2n+1fσ
2n+1

(x) , x ∈ I,

provided the series converges at x = a and x = b. In that case, f is said to be Hahn
symmetric integrable on [a, b]. We say that f is Hahn symmetric integrable on I if
it is Hahn symmetric integrable over [a, b] for all a, b ∈ I.

We now present two technical results that will be useful to prove the fundamental
theorem of Hahn’s symmetric integral calculus (Theorem 2.8).

Lemma 2.7 (cf. [1]). Let a, b ∈ I, a < b. If f : I → R is continuous at ω0, then,

for s ∈ [a, b], the sequence
(
fσ

2n+1

(s)
)
n∈N

converges uniformly to f (ω0) on I.

The next result tell us that if a function f is continuous at ω0, then f is Hahn’s
symmetric integrable.

Corollary 1 (cf. [1]). Let a, b ∈ I, a < b, and f : I → R be continuous at ω0.

Then, for s ∈ [a, b], the series
∑+∞
n=0 q

2n+1fσ
2n+1

(s) is uniformly convergent on I.

Theorem 2.8 (Fundamental theorem of the Hahn symmetric integral calculus).
Assume that f : I → R is continuous at ω0 and, for each x ∈ I, define

F (x) :=

∫ x

ω0

f (t) d̃q,ωt.

Then F is continuous at ω0. Furthermore, D̃q,ω[F ](x) exists for every x ∈ Iq,ω with

D̃q,ω[F ](x) = f(x). Conversely,∫ b

a

D̃q,ω [f ] (t) d̃q,ωt = f (b)− f (a)

for all a, b ∈ I.



82 A. M. C. BRITO DA CRUZ, N. MARTINS AND D. F. M. TORRES

Proof. We note that function F is continuous at ω0 by Corollary 1. Let us begin
by considering x ∈ Iq,ω\{ω0}. Then,

D̃q,ω

[
τ 7→

∫ τ

0

f (t) d̃q,ωt

]
(x)

=

∫ σ(x)
ω0

f (t) d̃q,ωt−
∫ σ−1(x)

ω0
f (t) d̃q,ωt

σ (x)− σ−1 (x)

=
1

σ (x)− σ−1 (x)

{[
σ−1 (σ (x))− σ (σ (x))

] +∞∑
n=0

q2n+1fσ
2n+1

(σ (x))

−
[
σ−1

(
σ−1 (x)

)
− σ

(
σ−1 (x)

)] +∞∑
n=0

q2n+1fσ
2n+1 (

σ−1 (x)
)}

=

+∞∑
n=0

q2nfσ
2n

(x)−
+∞∑
n=0

q2n+2fσ
2n+2

(x)

=

+∞∑
n=0

(
q2nfσ

2n

(x)− q2(n+1)fσ
2(n+1)

(x)

)
= f (x) .

If x = ω0, then

D̃q,ω [F ] (ω0)

= lim
h→0

F (ω0 + h)− F (ω0)

h

= lim
h→0

1

h

[
σ−1 (ω0 + h)− σ (ω0 + h)

] +∞∑
n=0

q2n+1fσ
2n+1

(ω0 + h)

= lim
h→0

1

h

[
q−1 (ω0 + h− ω)− q (ω0 + h)− ω

] +∞∑
n=0

q2n+1fσ
2n+1

(ω0 + h)

= lim
h→0

1

h

[(
q−1 − q

)
ω0 +

(
−q−1 − 1

)
ω +

(
q−1 − q

)
h
] +∞∑
n=0

q2n+1fσ
2n+1

(ω0 + h)

= lim
h→0

1

h

[(
q−1 − q

)
ω

1− q
+
(
−q−1 − 1

)
ω +

(
q−1 − q

)
h

]
+∞∑
n=0

q2n+1fσ
2n+1

(ω0 + h)

= lim
h→0

1

h

[(
1 + q

q
+
−1− q
q

)
ω +

(
q−1 − q

)
h

] +∞∑
n=0

q2n+1fσ
2n+1

(ω0 + h)

= lim
h→0

1− q2

q

+∞∑
n=0

q2n+1fσ
2n+1

(ω0 + h)

=
(
1− q2

) +∞∑
n=0

q2nf (ω0)

=
(
1− q2

) 1

1− q2
f (ω0)

= f (ω0) .
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Finally, since for x ∈ I\{ω0} we have∫ x

ω0

D̃q,ω [f ] (t)d̃q,ωt =
[
σ−1 (x)− σ (x)

] +∞∑
n=0

q2n+1D̃q,ω [f ]
σ2n+1

(x)

=
[
σ−1 (x)− σ (x)

] +∞∑
n=0

q2n+1 f
σ
(
σ2n+1 (x)

)
− fσ−1 (

σ2n+1 (x)
)

σ (σ2n+1 (x))− σ−1 (σ2n+1 (x))

=
[
σ−1 (x)− σ (x)

] +∞∑
n=0

q2n+1 f
σ
(
σ2n+1 (x)

)
− fσ−1 (

σ2n+1 (x)
)

q2n+1 (σ (x)− σ−1 (x))

=

+∞∑
n=0

[
fσ

2n

(x)− fσ
2(n+1)

(x)
]

= f (x)− f (ω0) ,

where in the third equality we use Lemma 2.3, then∫ b

a

D̃q,ω [f ] (t) d̃q,ωt =

∫ b

ω0

D̃q,ω [f ] (t) d̃q,ωt−
∫ a

ω0

D̃q,ω [f ] (t) d̃q,ωt

= f (b)− f (a) .

The Hahn symmetric integral has the following properties.

Theorem 2.9. Let f, g : I → R be Hahn’s symmetric integrable on I, a, b, c ∈ I,
and α, β ∈ R. Then,

1.
∫ a
a
f (t) d̃q,ωt = 0;

2.
∫ b
a
f (t) d̃q,ωt = −

∫ a
b
f (t) d̃q,ωt;

3.
∫ b
a
f (t) d̃q,ωt =

∫ c
a
f (t) d̃q,ωt+

∫ b
c
f (t) d̃q,ωt;

4.
∫ b
a

(αf + βg) (t) d̃q,ωt = α
∫ b
a
f (t) d̃q,ωt+ β

∫ b
a
g (t) d̃q,ωt;

5. if D̃q,ω [f ] and D̃q,ω [g] are continuous at ω0, then∫ b

a

fσ
−1

(t) D̃q,ω [g] (t) d̃q,ωt = f (t) g (t)

∣∣∣∣b
a

−
∫ b

a

D̃q,ω [f ] (t) gσ (t) d̃q,ωt. (1)

Proof. Properties 1 to 4 are trivial. Property 5 follows from Theorem 2.4 and
Theorem 2.8: since

D̃q,ω [fg] (t) = D̃q,ω [f ] (t) gσ (t) + fσ
−1

(t) D̃q,ω [g] (t) ,

then

fσ
−1

(t) D̃q,ω [g] (t) = D̃q,ω [fg] (t)− D̃q,ω [f ] (t) gσ (t)

and hence,∫ b

a

fσ
−1

(t) D̃q,ω [g] (t) d̃q,ωt = f (t) g (t)

∣∣∣∣b
a

−
∫ b

a

D̃q,ω [f ] (t) gσ (t) d̃q,ωt.

Remark 5. Relation (1) gives a Hahn’s symmetric integration by parts formula.
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Remark 6. Using Lemma 2.5 and the Hahn symmetric integration by parts formula
(1), we conclude that∫ b

a

f (t) D̃q,ω [g] (t) d̃q,ωt = fσ (t) g (t)

∣∣∣∣b
a

− q
∫ b

a

(
D̃q,ω [f ]

)σ
(t) gσ (t) d̃q,ωt. (2)

Proposition 1. Let c ∈ I, f and g be Hahn’s symmetric integrable on I. Suppose
that |f (t)| ≤ g (t) for all t ∈

{
σ2n+1 (c) : n ∈ N0

}
∪ {ω0}.

1. If c ≥ ω0, then ∣∣∣∣∫ c

ω0

f (t) d̃q,ωt

∣∣∣∣ ≤ ∫ c

ω0

g (t) d̃q,ωt.

2. If c < ω0, then ∣∣∣∣∫ ω0

c

f (t) d̃q,ωt

∣∣∣∣ ≤ ∫ ω0

c

g (t) d̃q,ωt.

Proof. If c ≥ ω0, then∣∣∣∣∫ c

ω0

f (t) d̃q,ωt

∣∣∣∣ =

∣∣∣∣∣[σ−1 (c)− σ (c)
] +∞∑
n=0

q2n+1fσ
2n+1

(c)

∣∣∣∣∣
≤
[
σ−1 (c)− σ (c)

] +∞∑
n=0

q2n+1
∣∣∣fσ2n+1

(c)
∣∣∣

≤
[
σ−1 (c)− σ (c)

] +∞∑
n=0

q2n+1gσ
2n+1

(c)

=

∫ c

ω0

g (t) d̃q,ωt.

If c < ω0, then∣∣∣∣∫ ω0

c

f (t) d̃q,ωt

∣∣∣∣ =

∣∣∣∣∣− [σ−1 (c)− σ (c)
] +∞∑
n=0

q2n+1fσ
2n+1

(c)

∣∣∣∣∣
≤
∣∣σ−1 (c)− σ (c)

∣∣ +∞∑
n=0

q2n+1
∣∣∣fσ2n+1

(c)
∣∣∣

= −
[
σ−1 (c)− σ (c)

] +∞∑
n=0

q2n+1
∣∣∣fσ2n+1

(c)
∣∣∣

≤ −
[
σ−1 (c)− σ (c)

] +∞∑
n=0

q2n+1gσ
2n+1

(c)

= −
∫ c

ω0

g (t) d̃q,ωt,

=

∫ ω0

c

g (t) d̃q,ωt

providing the desired equality.

As an immediate consequence, we have the following result.

Corollary 2. Let c ∈ I and f be Hahn’s symmetric integrable on I. Suppose that
f (t) ≥ 0 for all t ∈

{
σ2n+1 (c) : n ∈ N0

}
∪ {ω0}.
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1. If c ≥ ω0, then ∫ c

ω0

f (t) d̃q,ωt ≥ 0.

2. If c < ω0, then ∫ ω0

c

f (t) d̃q,ωt ≥ 0.

Remark 7. In general it is not true that if f is a nonnegative function on [a, b],
then ∫ b

a

f (t) d̃q,ωt ≥ 0.

As an example, consider the function f defined in [−5, 5] by

f (x) =

 6 if t = 3
1 if t = 4
0 if t ∈ [−5, 5] \ {3, 4} .

For q = 1
2 and ω = 1, this function is Hahn’s symmetric integrable because is

continuous at ω0 = 2. However,∫ 6

4

f (t) d̃q,ωt =

∫ 6

2

f (t) d̃q,ωt−
∫ 4

2

f (t) d̃q,ωt

= (10− 4)

+∞∑
n=0

(
1

2

)2n+1

fσ
2n+1

(6)− (6− 3)

+∞∑
n=0

(
1

2

)2n+1

fσ
2n+1

(4)

= 6

(
1

2

)
× 1− 3

(
1

2

)
× 6

= −6.

This example also proves that, in general, it is not true that∣∣∣∣∣
∫ b

a

f (t) d̃q,ωt

∣∣∣∣∣ ≤
∫ b

a

|f (t)| d̃q,ωt

for any a, b ∈ I.

3. Hahn’s symmetric variational calculus. We begin this section with some
useful definitions and notations. For s ∈ I we set

[s]q,ω :=
{
σ2n+1 (s) : n ∈ N0

}
∪ {ω0} .

Let a, b ∈ I with a < b. We define the Hahn symmetric interval from a to b by

[a, b]q,ω :=
{
σ2n+1 (a) : n ∈ N0

}
∪
{
σ2n+1 (b) : n ∈ N0

}
∪ {ω0} ,

that is,
[a, b]q,ω = [a]q,ω ∪ [b]q,ω .

Let r ∈ {0, 1}. We denote the linear space{
y : I → R | D̃i

q,ω [y] , i = 0, r, are bounded on [a, b]q,ω and continuous at ω0

}
endowed with the norm

‖y‖r =

r∑
i=0

sup
t∈[a,b]q,ω

∣∣∣D̃i
q,ω [y] (t)

∣∣∣ ,
where D̃0

q,ω [y] = y, by Yr
(

[a, b]q,ω ,R
)

.
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Definition 3.1. We say that y is an admissible function to problem (P) if y ∈
Y1
(

[a, b]q,ω ,R
)

and y satisfies the boundary conditions y (a) = α and y (b) = β.

Definition 3.2. We say that y∗ is a local minimizer (resp. local maximizer) to
problem (P) if y∗ is an admissible function and there exists δ > 0 such that

L (y∗) ≤ L (y) (resp. L (y∗) ≥ L (y) )

for all admissible y with ‖y∗ − y‖1 < δ.

Definition 3.3. We say that η ∈ Y1
(

[a, b]q,ω ,R
)

is an admissible variation to

problem (P) if η (a) = 0 = η (b).

Before proving our main results, we begin with three basic lemmas.

3.1. Basic Lemmas. The following results are useful to prove Theorem 3.8.

Lemma 3.4 (Fundamental lemma of the Hahn symmetric variational calculus).

Let f ∈ Y0
(

[a, b]q,ω ,R
)

. One has∫ b

a

f (t)hσ (t) d̃q,ωt = 0

for all h ∈ Y0
(

[a, b]q,ω ,R
)

with h (a) = h (b) = 0 if, and only if, f (t) = 0 for all

t ∈ [a, b]q,ω.

Proof. The implication “⇐” is obvious. Let us prove the implication “⇒”. Suppose,
by contradiction, that exists p ∈ [a, b]q,ω such that f (p) 6= 0.

1. If p 6= ω0, then p = σ2k+1 (a) or p = σ2k+1 (b) for some k ∈ N0.
(a) Suppose that a 6= ω0 and b 6= ω0. In this case we can assume, without

loss of generality, that p = σ2k+1 (a). Define

h (t) =

{
fσ

2k+1

(a) if t = σ2k+2 (a)

0 otherwise.

Then,∫ b

a

f (t)hσ (t) d̃q,ωt

=
[
σ−1 (b)− σ (b)

] +∞∑
n=0

q2n+1fσ
2n+1

(b)hσ
2n+2

(b)

−
[
σ−1 (a)− σ (a)

] +∞∑
n=0

q2n+1fσ
2n+1

(a)hσ
2n+2

(a)

= −
[
σ−1 (a)− σ (a)

]
q2k+1

[
fσ

2k+1

(a)
]2
6= 0,

which is a contradiction.
(b) Suppose that a 6= ω0 and b = ω0. Therefore, p = σ2k+1 (a) for some

k ∈ N0. Define

h (t) =

{
fσ

2k+1

(a) if t = σ2k+2 (a)

0 otherwise.

We obtain a contradiction with a similar proof as in case (a).
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(c) The case a = ω0 and b 6= ω0 is similar to (b).
2. If p = ω0, we assume, without loss of generality, that f (p) > 0. Since

lim
n→+∞

σ2n+2 (a) = lim
n→+∞

σ2n+2 (b) = ω0

and f is continuous at ω0,

lim
n→+∞

fσ
2n+1

(a) = lim
n→+∞

fσ
2n+1

(b) = f (ω0) .

Therefore, there exists an order n0 ∈ N such for all n > n0 the inequalities

fσ
2n+1

(a) > 0 and fσ
2n+1

(b) > 0

hold.
(a) If a, b 6= ω0, then for some k > n0 we define

h (t) =


− fσ

2k+1
(b)

σ−1(a)−σ(a) if t = σ2k+2 (a)

fσ
2k+1

(a)
σ−1(b)−σ(b) if t = σ2k+2 (b)

0 otherwise.

Hence,∫ b

a

f (t)hσ (t) d̃q,ωt = 2q2k+1fσ
2k+1

(a) fσ
2k+1

(b) > 0.

(b) If a = ω0, then we define

h (t) =

{
fσ

2k+1

(b) if t = σ2k+2 (b)

0 otherwise.

Therefore,∫ b

ω0

f (t)hσ (t) d̃q,ωt =
[
σ−1 (b)− σ (b)

]
q2k+1

[
fσ

2k+1

(b)
]2
6= 0.

(c) If b = ω0, the proof is similar to the previous case.

Definition 3.5. Let s ∈ I and g : I ×
]
−θ̄, θ̄

[
→ R. We say that g (t, ·) is d-

ifferentiable at θ0 uniformly in [s]q,ω if, for every ε > 0, there exists δ > 0 such
that

0 < |θ − θ0| < δ ⇒
∣∣∣∣g (t, θ)− g (t, θ0)

θ − θ0
− ∂2g (t, θ0)

∣∣∣∣ < ε

for all t ∈ [s]q,ω, where ∂2g = ∂g
∂θ .

Lemma 3.6 (cf. [24]). Let s ∈ I and assume that g : I×
]
−θ̄, θ̄

[
→ R is differentiable

at θ0 uniformly in [s]q,ω. If
∫ s
ω0
g (t, θ0) d̃q,ωt exists, then G (θ) :=

∫ s
ω0
g (t, θ) d̃q,ωt

for θ near θ0, is differentiable at θ0 with

G′ (θ0) =

∫ s

ω0

∂2g (t, θ0) d̃q,ωt.
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Proof. For s > ω0 the proof is similar to the proof given in Lemma 3.2 of [24]. The
result is trivial for s = ω0. Suppose that s < ω0 and let ε > 0 be arbitrary. Since
g (t, ·) is differentiable at θ0 uniformly in [s]q,ω, then there exists δ > 0 such that

for all t ∈ [s]q,ω and for 0 < |θ − θ0| < δ the following inequality holds:∣∣∣∣g (t, θ)− g (t, θ0)

θ − θ0
− ∂2g (t, θ0)

∣∣∣∣ < ε

2 (ω0 − s)
. (3)

Since, for 0 < |θ − θ0| < δ, we have∣∣∣∣∣G (θ)−G (θ0)

θ − θ0
−
∫ s

ω0

∂2g (t, θ0) d̃q,ωt

∣∣∣∣∣
=

∣∣∣∣∣
∫ s
ω0
g (t, θ) d̃q,ωt−

∫ s
ω0
g (t, θ0) d̃q,ωt

θ − θ0
−
∫ s

ω0

∂2g (t, θ0) d̃q,ωt

∣∣∣∣∣
=

∣∣∣∣∫ s

ω0

[
g (t, θ)− g (t, θ0)

θ − θ0
− ∂2g (t, θ0)

]
d̃q,ωt

∣∣∣∣
<

∫ ω0

s

ε

2 (ω0 − s)
d̃q,ωt (using Proposition 1 and inequality (3))

=
ε

2 (ω0 − s)

∫ ω0

s

1d̃q,ωt =
ε

2
< ε

then we can conclude that G′ (θ) =

∫ s

ω0

∂2g (t, θ0) d̃q,ωt.

For an admissible variation η and an admissible function y, we define φ : ]−ε̄, ε̄[→
R by φ (ε) := L (y + εη). The first variation of functional L of problem (P) is defined
by δL (y, η) := φ′ (0). Note that

L (y + εη) =

∫ b

a

L
(
t, yσ (t) + εησ (t) , D̃q,ω [y] (t) + εD̃q,ω [η] (t)

)
d̃q,ωt

= Lb (y + εη)− La (y + εη) ,

where

Lξ (y + εη) =

∫ ξ

ω0

L
(
t, yσ (t) + εησ (t) , D̃q,ω [y] (t) + εD̃q,ω [η] (t)

)
d̃q,ωt

with ξ ∈ {a, b}. Therefore, δL (y, η) = δLb (y, η)− δLa (y, η).
The following lemma is a direct consequence of Lemma 3.6.

Lemma 3.7. For an admissible variation η and an admissible function y, let

g (t, ε) := L
(
t, yσ (t) + εησ (t) , D̃q,ω [y] (t) + εD̃q,ω [η] (t)

)
.

Assume that

1. g (t, ·) is differentiable at ω0 uniformly in [a, b]q,ω;

2. Lξ (y + εη) =
∫ ξ
ω0
g (t, ε) d̃q,ωt, ξ ∈ {a, b}, exist for ε ≈ 0;

3.
∫ a
ω0
∂2g (t, 0) d̃q,ωt and

∫ b
ω0
∂2g (t, 0) d̃q,ωt exist.



HAHN’S SYMMETRIC VARIATIONAL CALCULUS 89

Then,

φ′ (0) := δL (y, η) =

∫ b

a

[
∂2L

(
t, yσ (t) , D̃q,ω [y] (t)

)
ησ (t)

+ ∂3L
(
t, yσ (t) , D̃q,ω [y] (t)

)
D̃q,ω [η] (t)

]
d̃q,ωt.

3.2. Optimality Conditions. In this section we present a necessary optimality
condition (the Hanh symmetric Euler–Lagrange equation) and a sufficient optimal-
ity condition to problem (P).

Theorem 3.8 (The Hahn symmetric Euler–Lagrange equation). Under hypothe-
ses (H1)–(H3) and conditions 1 to 3 of Lemma 3.7 on the Lagrangian L, if y∗ ∈
Y1
(

[a, b]q,ω ,R
)

is a local extremizer to problem (P), then y∗ satisfies the Hahn

symmetric Euler–Lagrange equation

∂2L
(
t, yσ (t) , D̃q,ω [y] (t)

)
= D̃q,ω

[
τ 7→ ∂3L

(
σ (τ) , yσ

2

(τ) ,
(
D̃q,ω [y]

)σ
(τ)
)]

(t)

(4)
for all t ∈ [a, b]q,ω.

Proof. Let y∗ be a local minimizer (resp. maximizer) to problem (P) and η an
admissible variation. Define φ : R → R by φ (ε) := L (y∗ + εη). A necessary
condition for y∗ to be an extremizer is given by φ′ (0) = 0. By Lemma 3.7,∫ b

a

[
∂2L

(
t, yσ∗ (t) , D̃q,ω [y∗] (t)

)
ησ (t)

+ ∂3L
(
t, yσ∗ (t) , D̃q,ω [y∗] (t)

)
D̃q,ω [η] (t)

]
d̃q,ωt = 0.

Using the integration by parts formula (2), we get∫ b

a

∂3L
(
t, yσ∗ (t) , D̃q,ω [y∗] (t)

)
D̃q,ω [η] (t) d̃q,ωt

= ∂3L
(
σ (t) , yσ

2

∗ (t) ,
(
D̃q,ω [y∗]

)σ
(t)
)
η (t)

∣∣∣∣b
a

− q
∫ b

a

(
D̃q,ω

[
τ 7→ ∂3L

(
τ, yσ∗ (τ) ,

(
D̃q,ω [y∗]

)
(τ)
)])σ

(t) ησ (t) d̃q,ωt.

Since η (a) = η (b) = 0, then∫ b

a

[
∂2L

(
t, yσ∗ (t) , D̃q,ω [y∗] (t)

)
− q

(
D̃q,ω

[
τ 7→ ∂3L

(
τ, yσ∗ (τ) ,

(
D̃q,ω [y∗]

)
(τ)
)])σ

(t)

]
ησ (t) d̃q,ωt = 0

and by Lemma 3.4 we get

∂2L
(
t, yσ∗ (t) , D̃q,ω [y∗] (t)

)
= q

(
D̃q,ω

[
τ 7→ ∂3L

(
τ, yσ∗ (τ) , D̃q,ω [y∗] (τ)

)])σ
(t)
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for all t ∈ [a, b]q,ω. Finally, using Lemma 2.5, we conclude that

∂2L
(
t, yσ∗ (t) , D̃q,ω [y∗] (t)

)
= D̃q,ω

[
τ 7→ ∂3L

(
σ (τ) , yσ

2

∗ (τ) ,
(
D̃q,ω [y∗]

)σ
(τ)
)]

(t) .

The particular case ω = 0 gives the q-symmetric Euler–Lagrange equation.

Corollary 3 (The q-symmetric Euler–Lagrange equation [7]). Let ω = 0. Under
hypotheses (H1)–(H3) and conditions 1 to 3 of Lemma 3.7 on the Lagrangian L,

if y∗ ∈ Y1
(

[a, b]q,0 ,R
)

is a local extremizer to problem (P) (with ω = 0), then y∗

satisfies the q-symmetric Euler–Lagrange equation

∂2L
(
t, y (qt) , D̃q [y] (t)

)
= D̃q

[
τ 7→ ∂3L

(
qτ, y

(
q2τ
)
, D̃q [y] (qτ)

)]
(t)

for all t ∈ [a, b]q,0.

To conclude this section, we prove a sufficient optimality condition to (P).

Definition 3.9. Given a Lagrangian L, we say that L (t, u, v) is jointly convex
(resp. concave) in (u, v) if, and only if, ∂iL, i = 2, 3, exist and are continuous and
verify the following condition:

L (t, u+ u1, v + v1)− L (t, u, v) ≥ (resp. ≤) ∂2L (t, u, v)u1 + ∂3L (t, u, v) v1

for all (t, u, v) , (t, u+ u1, v + v1) ∈ I × R2.

Theorem 3.10. Suppose that a < b and a, b ∈ [c]q,ω for some c ∈ I. Also, assume
that L is a jointly convex (resp. concave) function in (u, v). If y∗ satisfies the
Hahn symmetric Euler–Lagrange equation (4), then y∗ is a global minimizer (resp.
maximizer) to problem (P).

Proof. Let L be a jointly convex function in (u, v) (the concave case is similar).
Then, for any admissible variation η, we have

L(y∗ + η)− L (y∗)

=

∫ b

a

(
L
(
t, yσ (t) + ησ (t) , D̃q,ω [y] (t) + D̃q,ω [η] (t)

)
− L

(
t, yσ (t) , D̃q,ω [y] (t)

))
d̃q,ωt

≥
∫ b

a

(
∂2L

(
t, yσ (t) , D̃q,ω [y] (t)

)
ησ (t)

+ ∂3L
(
t, yσ (t) , D̃q,ω [y] (t)

)
D̃q,ω [η] (t)

)
d̃q,ωt.
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Using the integration by parts formula (2) and Lemma 2.5, we get

L (y∗ + η)− L (y∗) ≥ ∂3L
(
σ (t) , yσ

2

∗ (t) ,
(
D̃q,ω [y]

)σ
(t)
)
η (t)

∣∣∣∣b
a

+

∫ b

a

[
∂2L

(
t, yσ∗ (t) , D̃q,ω [y∗] (t)

)
− D̃q,ω

[
τ 7→ ∂3L

(
σ (τ) , yσ

2

(τ) ,
(
D̃q,ω [y]

)σ
(τ)
)

(t)
] ]
ησ (t) d̃q,ωt.

Since y∗ satisfies (4) and η is an admissible variation, we obtain

L (y∗ + η)− L (y∗) ≥ 0,

proving that y∗ is a minimizer to problem (P).

Example 1. Let q ∈ ]0, 1[ and ω ≥ 0 be fixed real numbers. Also, let I ⊆ R be an
interval such that a := ω0, b ∈ I and a < b. Consider the problem

L (y) =

∫ b

a

√
1 +

(
D̃q,ω [y] (t)

)2
d̃q,ωt −→ min

y ∈ Y1
(

[a, b]q,ω ,R
)

y (a) = a, y (b) = b.

(5)

If y∗ is a local minimizer to the problem, then y∗ satisfies the Hahn symmetric
Euler–Lagrange equation

D̃q,ω

τ 7→
(
D̃q,ω [y]

)σ
(τ)√

1 +
((
D̃q,ω [y]

)σ
(τ)
)2
 (t) = 0 for all t ∈ [a, b]q,ω . (6)

It is simple to check that function y∗ (t) = t is a solution to (6) satisfying the
given boundary conditions. Since the Lagrangian is jointly convex in (u, v), then
we conclude from Theorem 3.10 that function y∗ (t) = t is indeed a minimizer to
problem (5).

3.3. Leitmann’s Direct Method. Similarly to Malinowska and Torres [24], we
show that Leitmann’s direct method [19] has also applications in the Hahn sym-
metric variational calculus. Consider the variational functional integral

L̄ (ȳ) =

∫ b

a

L̄
(
t, ȳσ (t) , D̃q,ω [ȳ] (t)

)
d̃q,ωt.

As before, we assume that function L̄ : I × R × R → R satisfies the following
hypotheses:

(H1) (u, v)→ L̄ (t, u, v) is a C1
(
R2,R

)
function for any t ∈ I;

(H2) t → L̄
(
t, ȳσ (t) , D̃q,ω [ȳ] (t)

)
is continuous at ω0 for any admissible function

ȳ;

(H3) functions t → ∂i+2L̄
(
t, ȳσ (t) , D̃q,ω [ȳ] (t)

)
belong to Y1

(
[a, b]q,ω ,R

)
for all

admissible ȳ, i = 0, 1.
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Lemma 3.11 (Leitmann’s fundamental lemma via Hahn’s symmetric quantum
operator). Let y = z (t, ȳ) be a transformation having a unique inverse ȳ = z̄ (t, y)
for all t ∈ [a, b]q,ω, such that there is a one-to-one correspondence

y (t)↔ ȳ (t)

for all functions y ∈ Y1
(

[a, b]q,ω ,R
)

satisfying the boundary conditions y (a) = α

and y (b) = β and all functions ȳ ∈ Y1
(

[a, b]q,ω ,R
)

satisfying

ȳ (a) = z̄ (a, α) and ȳ (b) = z̄ (b, β) . (7)

If the transformation y = z (t, ȳ) is such that there exists a function G : I ×R→ R
satisfying the identity

L
(
t, yσ (t) , D̃q,ω [y] (t)

)
− L̄

(
t, ȳσ (t) , D̃q,ω [ȳ] (t)

)
= D̃q,ω [τ 7→ G (τ, ȳ (τ))] (t),

∀t ∈ [a, b]q,ω, then if ȳ∗ is a maximizer (resp. minimizer) of L̄ with ȳ∗ satisfying
(7), y∗ = z (t, ȳ∗) is a maximizer (resp. minimizer) of L for y∗ satisfying y∗ (a) = α
and y∗ (b) = β.

Proof. Suppose y ∈ Y1
(

[a, b]q,ω ,R
)

satisfies the boundary conditions y (a) = α and

y (b) = β. Define function ȳ ∈ Y1
(

[a, b]q,ω ,R
)

through the formula ȳ = z̄ (t, y),

t ∈ [a, b]q,ω. Then, ȳ satisfies (7) and

L (y)− L̄ (ȳ)

=

∫ b

a

L
(
t, yσ (t) , D̃q,ω [y] (t)

)
d̃q,ωt−

∫ b

a

L̄
(
t, ȳσ (t) , D̃q,ω [ȳ] (t)

)
d̃q,ωt

=

∫ b

a

D̃q,ω [τ 7→ G (τ, ȳ (τ))] (t) d̃q,ωt

= G (b, ȳ (b))−G (a, ȳ (a))

= G (b, z̄ (b, β))−G (a, z̄ (a, α)) .

The desired result follows immediately because the right-hand side of the above
equality is a constant, depending only on the fixed-endpoint conditions y (a) = α
and y (b) = β.

Example 2. Let q ∈ ]0, 1[, ω ≥ 0, and a := ω0, b with ω0 < b be fixed real numbers.
Also, let I be an interval of R such that ω0, b ∈ I. We consider the problem

L (y) =

∫ b

a

((
D̃q,ω [y] (t)

)2
+ qyσ (t) + tD̃q,ω [y] (t)

)
d̃q,ωt −→ min

y ∈ Y1
(

[a, b]q,ω ,R
)

y (a) = α, y (b) = β,

(8)

where α, β ∈ R and α 6= β. We transform problem (8) into the trivial problem

L̄ (ȳ) =

∫ b

a

(
D̃q,ω [ȳ] (t)

)2
d̃q,ωt −→ min

ȳ ∈ Y1
(

[a, b]q,ω ,R
)

ȳ (a) = 0, ȳ (b) = 0,
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which has solution ȳ ≡ 0. For that we consider the transformation

y (t) = ȳ (t) + ct+ d,

where c, d are real constants that will be chosen later. Since yσ (t) = ȳσ (t)+cσ (t)+d

and D̃q,ω [y] (t) = D̃q,ω [ȳ] (t) + c, we have(
D̃q,ω [y] (t)

)2
+ qyσ (t) + tD̃q,ω [y] (t)

=
(
D̃q,ω [ȳ] (t)

)2
+ 2cD̃q,ω [ȳ] (t) + c2 + qd+ qȳσ (t) + tD̃q,ω [ȳ] (t) + c (qσ (t) + t) .

Therefore,[(
D̃q,ω [y] (t)

)2
+ qyσ (t) + tD̃q,ω [y] (t)

]
−
(
D̃q,ω [ȳ] (t)

)2
= D̃q,ω [2cȳ] (t) + D̃q,ω

[(
c2 + qd

)
id
]

(t) + D̃q,ω [σ · ȳ] (t) + cD̃q,ω [σ · id] (t)

= D̃q,ω

[
2cȳ +

(
c2 + qd

)
id+ σ · ȳ + c (σ · id)

]
(t) ,

where id represents the identity function. In order to obtain the solution to the
original problem, it suffices to choose c and d such that{

ca+ d = α
cb+ d = β.

(9)

Solving the system of equations (9) we obtain c =
α− β
a− b

and d =
aβ − bα
a− b

. Hence,

the global minimizer to problem (8) is

y (t) =
α− β
a− b

t+
aβ − bα
a− b

.

Acknowledgments. Work supported by FEDER funds through COMPETE —
Operational Programme Factors of Competitiveness (“Programa Operacional Fac-
tores de Competitividade”) and by Portuguese funds through the Center for Re-
search and Development in Mathematics and Applications (University of Aveiro)
and the Portuguese Foundation for Science and Technology (“FCT — Fundação
para a Ciência e a Tecnologia”), within project PEst-C/MAT/UI4106/2011 with
COMPETE number FCOMP-01-0124-FEDER-022690. The first author was also
supported by FCT through the Ph.D. fellowship SFRH/BD/33634/2009.

REFERENCES

[1] K. A. Aldwoah, Generalized time scales and associated difference equations, Ph.D. thesis,
Cairo University, 2009.

[2] K. A. Aldwoah, A. B. Malinowska and D. F. M. Torres, The power quantum calculus and

variational problems, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012),
93–116.

[3] R. Almeida and D. F. M. Torres, Leitmann’s direct method for fractional optimization prob-
lems, Appl. Math. Comput., 217 (2010), 956–962.

[4] R. Almeida and D. F. M. Torres, Nondifferentiable variational principles in terms of a quan-

tum operator , Math. Methods Appl. Sci., 34 (2011), 2231–2241.

[5] G. Boole, “Calculus of Finite Differences,” Edited by J. F. Moulton 4th ed, Chelsea Publishing
Co. New York, 1957.

[6] A. M. C. Brito da Cruz, N. Martins and D. F. M. Torres, Higher-order Hahn’s quantum
variational calculus, Nonlinear Anal., 75 (2012), 1147–1157.

[7] A. M. C. Brito da Cruz and N. Martins, The q-symmetric variational calculus, Comput.

Math. Appl., 64 (2012), 2241–2250.

http://www.ams.org/mathscinet-getitem?mr=MR2918250&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2727133&return=pdf
http://dx.doi.org/10.1016/j.amc.2010.03.085
http://dx.doi.org/10.1016/j.amc.2010.03.085
http://www.ams.org/mathscinet-getitem?mr=MR2861739&return=pdf
http://dx.doi.org/10.1002/mma.1523
http://dx.doi.org/10.1002/mma.1523
http://www.ams.org/mathscinet-getitem?mr=MR0115025&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2861326&return=pdf
http://dx.doi.org/10.1016/j.na.2011.01.015
http://dx.doi.org/10.1016/j.na.2011.01.015
http://www.ams.org/mathscinet-getitem?mr=MR2966860&return=pdf
http://dx.doi.org/10.1016/j.camwa.2012.01.076


94 A. M. C. BRITO DA CRUZ, N. MARTINS AND D. F. M. TORRES

[8] D. A. Carlson and G. Leitmann, Coordinate transformation method for the extremization of
multiple integrals, J. Optim. Theory Appl., 127 (2005), 523–533.

[9] D. A. Carlson and G. Leitmann, Fields of extremals and sufficient conditions for the simplest

problem of the calculus of variations, J. Global Optim., 40 (2008), 41–50.
[10] J. Cresson, G. S. F. Frederico and D. F. M. Torres, Constants of motion for non-differentiable

quantum variational problems, Topol. Methods Nonlinear Anal., 33 (2009), 217–231.
[11] T. Ernst, The different tongues of q-calculus, Proc. Est. Acad. Sci., 57 (2008), 81–99.

[12] R. P. Feynman and A. R. Hibbs, “Quantum mechanics and path integrals,” Emended edition,

Dover, Mineola, NY, 2010.
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2 (1949), 4–34.

[14] F. H. Jackson, q-Difference equations, Amer. J. Math., 32 (1910), 305–314.
[15] V. Kac and P. Cheung, “Quantum Calculus,” Universitext, Springer, New York, 2002.

[16] R. Koekoek, P. A. Lesky and R. F. Swarttouw, “Hypergeometric Orthogonal Polynomials and

Their Q-Analogues,” Springer Monographs in Mathematics, Springer, Berlin, 2010.
[17] A. Lavagno and G. Gervino, Quantum mechanics in q-deformed calculus, J. Phys.: Conf.

Ser., 174 (2009), 012071, 8 pp.

[18] A. Lavagno and P. Narayana Swamy, q-deformed structures and nonextensive statistics: a
comparative study, Phys. A, 305 (2002), 310–315.

[19] G. Leitmann, A note on absolute extrema of certain integrals, Internat. J. Non-Linear Mech.,
2 (1967), 55–59.

[20] G. Leitmann, On a class of direct optimization problems, J. Optim. Theory Appl., 108 (2001),

467–481.
[21] G. Leitmann, Some extensions to a direct optimization method , J. Optim. Theory Appl., 111

(2001), 1–6.

[22] G. Leitmann, On a method of direct optimization, Vychisl. Tekhnol., 7 (2002), 63–67.
[23] A. B. Malinowska and D. F. M. Torres, Leitmann’s direct method of optimization for absolute

extrema of certain problems of the calculus of variations on time scales, Appl. Math. Comput.,

217 (2010), 1158–1162.
[24] A. B. Malinowska and D. F. M. Torres, The Hahn quantum variational calculus, J. Optim.

Theory Appl., 147 (2010), 419–442.
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