953 research outputs found

    The Hubble Space Telescope Treasury Program on the Orion Nebula Cluster

    Full text link
    The Hubble Space Telescope (HST) Treasury Program on the Orion Nebula Cluster has used 104 orbits of HST time to image the Great Orion Nebula region with the Advanced Camera for Surveys (ACS), the Wide-Field/Planetary Camera 2 (WFPC2) and the Near Infrared Camera and Multi Object Spectrograph (NICMOS) instruments in 11 filters ranging from the U-band to the H-band equivalent of HST. The program has been intended to perform the definitive study of the stellar component of the ONC at visible wavelengths, addressing key questions like the cluster IMF, age spread, mass accretion, binarity and cirumstellar disk evolution. The scanning pattern allowed to cover a contiguous field of approximately 600 square arcminutes with both ACS and WFPC2, with a typical exposure time of approximately 11 minutes per ACS filter, corresponding to a point source depth AB(F435W) = 25.8 and AB(F775W)=25.2 with 0.2 magnitudes of photometric error. We describe the observations, data reduction and data products, including images, source catalogs and tools for quick look preview. In particular, we provide ACS photometry for 3399 stars, most of them detected at multiple epochs, WFPC2 photometry for 1643 stars, 1021 of them detected in the U-band, and NICMOS JH photometry for 2116 stars. We summarize the early science results that have been presented in a number of papers. The final set of images and the photometric catalogs are publicly available through the archive as High Level Science Products at the STScI Multimission Archive hosted by the Space Telescope Science Institute.Comment: Accepted for publication on the Astrophysical Journal Supplement Series, March 27, 201

    Implantation of multiply charged carbon ions in water ice

    Get PDF
    Context. Several objects in the Solar System like Europa, Ganymede and Callisto have frozen surface (main component: H2O). The associated thickness is bigger than the penetration depth of the relevant projectile ions. Additionally, other species such as H2O2, SO2 and CO2 have been detected on these surface. The formation mechanisms of these molecules are still under discussion. Aims. We present new experimental results on the implantation of 13Cq+ (q = 2, 3) ions at an energy of 30 keV in water ice at low temperatures (15 and 80 K). Experiments with multiply charged ions at energies of tens of keV are particularly relevant to simulating the complexity of the irradiation environment to which the surfaces of the icy moons in the outer solar system are exposed. Methods. The experiments were performed at the low energy ion beam facility ARIBE of GANIL in Caen (France). 30 keV 13Cq+ (q = 2, 3) ions have been used to bombard solid H,2O surface which were frozen at 15K and 80K. Fourier Transform Infrared Spectrometer (FTIR) was used to analyze the sample in the 5000 - 600 cm-1 (2-16.7 μm) region with a spectral resolution of 1 cm-1. Results. The results of our experiments indicate that implantation produces 13CO2 with yields in the range of 0.32-0.57 molecules ion-1. This yield seems to be independent of the temperature of the ices in the range studied. We have estimated the time scale necessary to accumulate by implantation of magnetospheric carbon ions the observed quantity of carbon dioxide on the surface of Europa, a Jovian moon. This time scale is of the order of 1.0-1.3x104 yrs which is higher than that evaluated for carbon dioxide production by other relevant processes. Conclusions.We conclude that although a relevant quantity of CO2 can be formed by carbon ion implantation, this is not the dominant formation mechanism at Europa

    Collider signatures of goldstini in gauge mediation

    Full text link
    We investigate the collider signatures of the multiple goldstini scenario in the framework of gauge mediation. This class of models is characterized by a visible sector (e.g. the MSSM or any extension) coupled by gauge interactions to more than one SUSY breaking sector. The spectrum consists of a light gravitino LSP, behaving as a goldstino, and a number of neutral fermions (the pseudo-goldstini) with a mass between that of the LSP and that of the lightest particle of the observable sector (LOSP). We consider the two situations where the LOSP is either a gaugino-like neutralino or a stau and we assume only one pseudo-goldstino of a mass of O(100) GeV. The coupling of the LOSP to the pseudo-goldstino can be enhanced with respect to those of the gravitino giving rise to characteristic signatures. We show that the decay modes of the LOSP into a SM particle and a pseudo-goldstino can be significant. For both LOSP scenarios we analyze (pseudo)-goldstini production at colliders. Compared to standard gauge mediation the final state spectrum is softer and more structured.Comment: v2: analysis of the stau LOSP scenario added, sections rearranged, and Introduction and Conclusions rewritten to include the added scenario. Version to appear in JHE

    Detection and Characterization of Extrasolar Planets through Doppler Spectroscopy

    Full text link
    Over 300 extrasolar planets have been found since 1992, showing that planetary systems are common and exhibit an outstanding variety of characteristics. As the number of detections grows and as models of planet formation progress to account for the existence of these new worlds, statistical studies and confrontations of observation with theory allow to progressively unravel the key processes underlying planet formation. In this chapter we review the dominant contribution of Doppler spectroscopy to the present discoveries and to our general understanding of planetary systems. We also emphasize the synergy of Doppler spectroscopy and transit photometry in characterizing the physical properties of transiting extrasolar planets. As we will see, Doppler spectroscopy has not reached its limits yet and it will undoubtly play a leading role in the detection and characterization of the first Earth-mass planets.Comment: 50 pages, 16 figures, to appear in the proceedings of the Les Houches Winter School "Physics and Astrophysics of Planetary Systems" (EDP Sciences: EAS Publications Series

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Reduced Estradiol-Induced Vasodilation and Poly-(ADP-Ribose) Polymerase (PARP) Activity in the Aortas of Rats with Experimental Polycystic Ovary Syndrome (PCOS)

    Get PDF
    Polycystic ovary syndrome (PCOS) is a complex endocrine disorder characterized by hyperandrogenism and insulin resistance, both of which have been connected to atherosclerosis. Indeed, an increased risk of clinical manifestations of arterial vascular diseases has been described in PCOS. On the other hand endothelial dysfunction can be detected early on, before atherosclerosis develops. Thus we assumed that vascular dysfunction is also related directly to the hormonal imbalance rather than to its metabolic consequences. To detect early functional changes, we applied a novel rodent model of PCOS: rats were either sham operated or hyperandrogenism was achieved by implanting subcutaneous pellets of dihydrotestosterone (DHT). After ten weeks, myograph measurements were performed on isolated aortic rings. Previously we described an increased contractility to norepinephrine (NE). Here we found a reduced immediate relaxation to estradiol treatment in pre-contracted aortic rings from hyperandrogenic rats. Although the administration of vitamin D3 along with DHT reduced responsiveness to NE, it did not restore relaxation to estradiol. Poly-(ADP-ribose) polymerase (PARP) activity was assessed by poly-ADP-ribose immunostaining. Increased PAR staining in ovaries and circulating leukocytes from DHT rats showed enhanced DNA damage, which was reduced by concomitant vitamin D3 treatment. Surprisingly, PAR staining was reduced in both the endothelium and vascular smooth muscle cells of the aorta rings from hyperandrogenic rats. Thus in the early phase of PCOS, vascular tone is already shifted towards vasoconstriction, characterized by reduced vasorelaxation and vascular dysfunction is concomitant with altered PARP activity. Based on our findings, PARP inhibitors might have a future perspective in restoring metabolic disorders in PCOS

    N-acetylcysteine does not prevent contrast-induced nephropathy after cardiac catheterization in patients with diabetes mellitus and chronic kidney disease: a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with diabetes mellitus (DM) and chronic kidney disease (CKD) constitute to be a high-risk population for the development of contrast-induced nephropathy (CIN), in which the incidence of CIN is estimated to be as high as 50%. We performed this trial to assess the efficacy of <it>N</it>-acetylcysteine (NAC) in the prevention of this complication.</p> <p>Methods</p> <p>In a prospective, double-blind, placebo controlled, randomized clinical trial, we studied 90 patients undergoing elective diagnostic coronary angiography with DM and CKD (serum creatinine ≥ 1.5 mg/dL for men and ≥ 1.4 mg/dL for women). The patients were randomly assigned to receive either oral NAC (600 mg BID, starting 24 h before the procedure) or placebo, in adjunct to hydration. Serum creatinine was measured prior to and 48 h after coronary angiography. The primary end-point was the occurrence of CIN, defined as an increase in serum creatinine ≥ 0.5 mg/dL (44.2 μmol/L) or ≥ 25% above baseline at 48 h after exposure to contrast medium.</p> <p>Results</p> <p>Complete data on the outcomes were available on 87 patients, 45 of whom had received NAC. There were no significant differences between the NAC and placebo groups in baseline characteristics, amount of hydration, or type and volume of contrast used, except in gender (male/female, 20/25 and 34/11, respectively; P = 0.005) and the use of statins (62.2% and 37.8%, respectively; P = 0.034). CIN occurred in 5 out of 45 (11.1%) patients in the NAC group and 6 out of 42 (14.3%) patients in the placebo group (P = 0.656).</p> <p>Conclusion</p> <p>There was no detectable benefit for the prophylactic administration of oral NAC over an aggressive hydration protocol in patients with DM and CKD.</p> <p>Trial registration</p> <p>NCT00808795</p

    Glutathione Deficiency in Cardiac Patients Is Related to the Functional Status and Structural Cardiac Abnormalities

    Get PDF
    International audienceBACKGROUND: The tripeptide glutathione (L-gamma-glutamyl-cysteinyl-glycine) is essential to cell survival, and deficiency in cardiac and systemic glutathione relates to heart failure progression and cardiac remodelling in animal models. Accordingly, we investigated cardiac and blood glutathione levels in patients of different functional classes and with different structural heart diseases. METHODS: Glutathione was measured using standard enzymatic recycling method in venous blood samples obtained from 91 individuals, including 15 healthy volunteers and 76 patients of New York Heart Association (NYHA) functional class I to IV, undergoing cardiac surgery for coronary artery disease, aortic stenosis or terminal cardiomyopathy. Glutathione was also quantified in right atrial appendages obtained at the time of surgery. RESULTS: In atrial tissue, glutathione was severely depleted (-58%) in NYHA class IV patients compared to NYHA class I patients (P = 0.002). In patients with coronary artery disease, this depletion was related to the severity of left ventricular dysfunction (P = 0.006). Compared to healthy controls, blood glutathione was decreased by 21% in NYHA class I patients with structural cardiac disease (P<0.01), and by 40% in symptomatic patients of NYHA class II to IV (P<0.0001). According to the functional NYHA class, significant depletion in blood glutathione occurred before detectable elevation in blood sTNFR1, a marker of symptomatic heart failure severity, as shown by the exponential relationship between these two parameters in the whole cohort of patients (r = 0.88). CONCLUSIONS: This study provides evidence that cardiac and systemic glutathione deficiency is related to the functional status and structural cardiac abnormalities of patients with cardiac diseases. These data also suggest that blood glutathione test may be an interesting new biomarker to detect asymptomatic patients with structural cardiac abnormalities
    corecore