2,999 research outputs found

    Measurements of the UV background at 4.6 < z < 6.4 using the quasar proximity effect

    Full text link
    We present measurements of the ionising ultraviolet background (UVB) at z ~ 5-6 using the quasar proximity effect. The fifteen quasars in our sample cover the range 4.6 < z_q < 6.4, enabling the first proximity effect measurements of the UVB at z > 5. The metagalactic hydrogen ionisation rate, Gamma_bkg, was determined by modelling the combined ionisation field from the quasar and the UVB in the proximity zone on a pixel-by-pixel basis. The optical depths in the spectra were corrected for the expected effect of the quasar until the mean flux in the proximity region equalled that in the average Ly-alpha forest, and from this we make a measurement of Gamma_bkg. A number of systematic effects were tested using synthetic spectra. Noise in the flux was found to be the largest source of bias at z ~ 5, while uncertainties in the mean transmitted Ly-alpha flux are responsible for the largest bias at z ~ 6. The impacts of large-scale overdensities and Lyman limit systems on Gamma_bkg were also investigated, but found to be small at z > 5. We find a decline in Gamma_bkg with redshift, from log(Gamma_bkg) = -12.15 ±\pm 0.16 at z ~ 5 to log(Gamma_bkg) = -12.84 ±\pm 0.18 at z ~ 6 (1 sigma errors). Compared to UVB measurements at lower redshifts, our measurements suggest a drop of a factor of five in the HI photoionisation rate between z ~ 4 and z ~ 6. The decline of Gamma_bkg appears to be gradual, and we find no evidence for a sudden change in the UVB at any redshift that would indicate a rapid change in the attenuation length of ionising photons. Combined with recent measurements of the evolution of the mean free path of ionising photons, our results imply decline in the emissivity of ionising photons by roughly a factor of two from z ~ 5 to 6, albeit with significant uncertainty due to the measurement errors in both Gamma_bkg and the mean free path.Comment: 22 pages, 19 figures, 5 tables; accepted for publication in MNRA

    The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables including herbs, blanched during processing

    Get PDF
    A multi-country outbreak ofListeria monocytogenesST6 linked to blanched frozen vegetables (bfV)took place in the EU (2015–2018). Evidence of food-borne outbreaks shows thatL. monocytogenesisthe most relevant pathogen associated with bfV. The probability of illness per serving of uncooked bfV,for the elderly (65–74 years old) population, is up to 3,600 times greater than cooked bfV and verylikely lower than any of the evaluated ready-to-eat food categories. The main factors affectingcontamination and growth ofL. monocytogenesin bfV during processing are the hygiene of the rawmaterials and process water; the hygienic conditions of the food processing environment (FPE); andthe time/Temperature (t/T) combinations used for storage and processing (e.g. blanching, cooling).Relevant factors after processing are the intrinsic characteristics of the bfV, the t/T combinations usedfor thawing and storage and subsequent cooking conditions, unless eaten uncooked. Analysis of thepossible control options suggests that application of a complete HACCP plan is either not possible orwould not further enhance food safety. Instead, specific prerequisite programmes (PRP) andoperational PRP activities should be applied such as cleaning and disinfection of the FPE, water control,t/T control and product information and consumer awareness. The occurrence of low levels ofL. monocytogenesat the end of the production process (e.g.<10 CFU/g) would be compatible with thelimit of 100 CFU/g at the moment of consumption if any labelling recommendations are strictly followed(i.e. 24 h at 5°C). Under reasonably foreseeable conditions of use (i.e. 48 h at 12°C),L. monocytogeneslevels need to be considerably lower (not detected in 25 g). Routine monitoring programmes forL. monocytogenesshould be designed following a risk-based approach and regularly revised based ontrend analysis, being FPE monitoring a key activity in the frozen vegetable industry

    Wide-Field Imaging and Polarimetry for the Biggest and Brightest in the 20GHz Southern Sky

    Full text link
    We present wide-field imaging and polarimetry at 20GHz of seven of the most extended, bright (Stot >= 0.50 Jy), high-frequency selected radio sources in the southern sky with declinations < -30 deg. Accompanying the data are brief reviews of the literature for each source, The results presented here aid in the statistical completeness of the Australia Telescope 20GHz Survey's bright source sample. The data are of crucial interest for future cosmic microwave background missions as a collection of information about candidate calibrator sources. We are able to obtain data for seven of the nine sources identified by our selection criteria. We report that Pictor A is thus far the best extragalactic calibrator candidate for the Low Frequency Instrument of the Planck European Space Agency mission due to its high level of integrated polarized flux density (0.50+/-0.06 Jy) on a scale of 10 arcmin. Six of the seven sources have a clearly detected compact radio core, with either a null or less than two percent detection of polarized emission from the nucleus. Most sources with detected jets have magnetic field alignments running in a longitudinal configuration, however PKS1333-33 exhibits transverse fields and an orthogonal change in field geometry from nucleus to jets.Comment: 17 pages, 9 figures, 2 table

    EHMTI-0026. Neuroprolotherapy and acupuncture for clinical trial of acute and chronic migraine treatment

    Get PDF
    Nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR) are Ca2+-mobilizing messengers important for modulating cardiac excitation–contraction coupling and pathophysiology. CD38, which belongs to the ADP-ribosyl cyclase family, catalyzes synthesis of both NAADP and cADPR in vitro. However, it remains unclear whether this is the main enzyme for their production under physiological conditions. Here we show that membrane fractions from WT but not CD38−/− mouse hearts supported NAADP and cADPR synthesis. Membrane permeabilization of cardiac myocytes with saponin and/or Triton X-100 increased NAADP synthesis, indicating that intracellular CD38 contributes to NAADP production. The permeabilization also permitted immunostaining of CD38, with a striated pattern in WT myocytes, whereas CD38−/− myocytes and nonpermeabilized WT myocytes showed little or no staining, without striation. A component of β-adrenoreceptor signaling in the heart involves NAADP and lysosomes. Accordingly, in the presence of isoproterenol, Ca2+ transients and contraction amplitudes were smaller in CD38−/− myocytes than in the WT. In addition, suppressing lysosomal function with bafilomycin A1 reduced the isoproterenol-induced increase in Ca2+ transients in cardiac myocytes from WT but not CD38−/− mice. Whole hearts isolated from CD38−/− mice and exposed to isoproterenol showed reduced arrhythmias. SAN4825, an ADP-ribosyl cyclase inhibitor that reduces cADPR and NAADP synthesis in mouse membrane fractions, was shown to bind to CD38 in docking simulations and reduced the isoproterenol-induced arrhythmias in WT hearts. These observations support generation of NAADP and cADPR by intracellular CD38, which contributes to effects of β-adrenoreceptor stimulation to increase both Ca2+ transients and the tendency to disturb heart rhythm

    Electron-Phonon interaction and electronic decoherence in molecular conductors

    Full text link
    We perform a brief but critical review of the Landauer picture of transport that clarifies how decoherence appears in this approach. On this basis, we present different models that allow the study of the coherent and decoherent effects of the interaction with the environment in the electronic transport. These models are particularly well suited for the analysis of transport in molecular wires. The effects of decoherence are described through the D'Amato-Pastawski model that is explained in detail. We also consider the formation of polarons in some models for the electron-vibrational interaction. Our quantum coherent framework allows us to study many-body interference effects. Particular emphasis is given to the occurrence of anti-resonances as a result of these interferences. By studying the phase fluctuations in these soluble models we are able to identify inelastic and decoherence effects. A brief description of a general formulation for the consideration of time-dependent transport is also presented.Comment: 32 pages, 11 eps figures. To appear in Chemical Physics (Special Molecular Electronics Number

    The clustering of massive galaxies at z~0.5 from the first semester of BOSS data

    Get PDF
    We calculate the real- and redshift-space clustering of massive galaxies at z~0.5 using the first semester of data by the Baryon Oscillation Spectroscopic Survey (BOSS). We study the correlation functions of a sample of 44,000 massive galaxies in the redshift range 0.4<z<0.7. We present a halo-occupation distribution modeling of the clustering results and discuss the implications for the manner in which massive galaxies at z~0.5 occupy dark matter halos. The majority of our galaxies are central galaxies living in halos of mass 10^{13}Msun/h, but 10% are satellites living in halos 10 times more massive. These results are broadly in agreement with earlier investigations of massive galaxies at z~0.5. The inferred large-scale bias (b~2) and relatively high number density (nbar=3e-4 h^3 Mpc^{-3}) imply that BOSS galaxies are excellent tracers of large-scale structure, suggesting BOSS will enable a wide range of investigations on the distance scale, the growth of large-scale structure, massive galaxy evolution and other topics.Comment: 11 pages, 12 figures, matches version accepted by Ap
    corecore