308 research outputs found

    Testing the pressure-confined Ly alpha cloud model

    Get PDF
    The Ly-alpha absorption line forest, seen in quasar spectra, is generally interpreted as being due to cosmologically distributed 'clouds' of primordial gas. Analyses of the observations reveal that the number distribution can be described by power laws: dN/dz is proportional to (1 + z)(sup gamma) and dN/dN(sub HI) is proportional to N(sub HI)(sup -beyda), where N(sub HI) is the HI column density. The typical values for power law indices range between 2 is approximately less than gamma is approximately less than 2.6 and 1.7 is approximately less than gamma is approximately less than 1.9. One model postulates that the Ly-alpha clouds are optically thin entities, photoionized by the background UV flux, J(sub nu) is proportional to (1 + z)(sup j), and confined by an adiabatically evolving intercloud medium (ICM): P(z) is proportional to (1 + z)(sup 5). Analytic studies of this model suggest that the ensuing Ly-alpha line statistics can account for the observations (in particular, the dN/dz and the dN/dN(sub HI) distributions) if the cloud mass spectrum is a power law dN/dN is proportional to M(sup -delta), delta is approximately 1.9, and j is approximately 4. One of the simplifying assumptions incorporated into these studies is the existence of a large mass range for the clouds at all epochs, the validity of which is questionable. The pressure-confined model is investigated using a 1-D spherically symmetric hydrodynamical code to simulate cloud evolution over the epoch 1.8 less than z less than 6. This enables us to relax many of the assumptions incorporated in the analytic studies

    El planetari Zeiss

    Get PDF

    Low-Metallicity Gas Clouds in a Galaxy Proto-Cluster at Redshift 2.38

    Full text link
    We present high resolution spectroscopy of a QSO whose sight-line passes through the halo of a pair of elliptical galaxies at redshift 2.38. This pair of galaxies probably lies at the center of a galaxy proto-cluster, and is embedded in a luminous extended Ly-alpha nebula. The QSO sight-line intersects two small gas clouds within this halo. These clouds have properties similar to those of high velocity clouds (HVCs) seen in the halo of the Milky Way. The gas is in a cool (< 2 x 10^4 K) and at least 20% neutral phase, with metallicities in the range -3.0 < [Fe/H] < -1.1 and neutral hydrogen column densities of ~10^19.5 /cm^2. The origin of these clouds is unclear. The presence of low metallicity gas within this possible proto-cluster implies either that the intra-cluster medium has not been enriched with metals at this redshift, or the clouds are embedded within a hot, ionized, metal-rich gas phase.Comment: Accepted to appear in ApJ Letter

    The Distribution of Lya-Emitting Galaxies at z=2.3

    Full text link
    We present the detection of 34 Ly-alpha emission-line galaxy candidates in a 80x80x60 co-moving Mpc region surrounding the known z=2.38 galaxy cluster J2143-4423. The space density of Ly-alpha emitters is comparable to that found by Steidel et al. when targeting a cluster at redshift 3.09, but is a factor of 5.8 +/- 2.5 greater than that found by field samples at similar redshifts. The distribution of these galaxy candidates contains several 5-10 Mpc scale voids. We compare our observations with mock catalogs derived from the VIRGO consortium Lambda-CDM n-body simulations. Fewer than 1% of the mock catalogues contain voids as large as we observe. Our observations thus tentatively suggest that the galaxy distribution at redshift 2.38 contains larger voids than predicted by current models. Three of the candidate galaxies and one previously discovered galaxy have the large luminosities and extended morphologies of "Ly-alpha blobs".Comment: 10 pages, 8 figures, emulateapj5, Accepted for publication in Ap

    Mystery of the Lyα Blobs

    Get PDF
    We present Spitzer Space Telescope observations of the extended Lyman α blobs associated with the z=2.38 over-density J2143-4423, the largest known structure (110 Mpc) above z=2. We detect all 4 of the Lyα blobs in all four IRAC channels and we also detect 3 out of 4 of the blobs with MIPS 24μm. Conversion from rest-wavelength 7μm to total far-infrared luminosity using locally derived correlations suggests all the detected sources are in the class of ULIRGs or even Hyper-LIRGs. We find a weak correlation between Lyα and mid-infrared emission for the Lyα blobs (L_(Lyα)/L_(bol) = 0.05-0.2%). Nearly all Lyα blobs show some evidence for interaction, either in HST imaging, or the proximity of multiple MIPS sources within the Lyα cloud. This suggests that interaction or even mergers may be related to the production of Lyα blobs. Optical through infrared SEDs of the Lyα blobs do not show a clear 1.6μm bump, but rather are indicative of a composite of star formation and AGN energy sources

    Polycyclic Aromatic Hydrocarbon Emission within Lyα Blobs

    Get PDF
    We present Spitzer observations of Lyα blobs (LABs) at z = 2.38-3.09. The mid-infrared ratios (4.5 μm/8 μm and 8 μm/24 μm) indicate that ~60% of LAB infrared counterparts are cool, consistent with their infrared output being dominated by star formation and not active galactic nuclei (AGNs). The rest have a substantial hot dust component that one would expect from an AGN or an extreme starburst. Comparing the mid-infrared to submillimeter fluxes (~850 μm or rest-frame far-infrared) also indicates that a large percentage (~2/3) of the LAB counterparts have total bolometric energy output dominated by star formation, although the number of sources with submillimeter detections or meaningful upper limits remains small (~10). We obtained Infrared Spectrograph (IRS) spectra of six infrared-bright sources associated with LABs. Four of these sources have measurable polycyclic aromatic hydrocarbon (PAH) emission features, indicative of significant star formation, while the remaining two show a featureless continuum, indicative of infrared energy output completely dominated by an AGN. Two of the counterparts with PAHs are mixed sources, with PAH line-to-continuum ratios and PAH equivalent widths indicative of large energy contributions from both star formation and AGN. Most of the LAB infrared counterparts have large stellar masses, around 10^(11) M_⊙. There is a weak trend of mass upper limit with the Lyα luminosity of the host blob, particularly after the most likely AGN contaminants are removed. The range in likely energy sources for the LABs found in this and previous studies suggests that there is no single source of power that is producing all the known LABs

    Concurrent Expandable AMQs on the Basis of Quotient Filters

    Get PDF
    A quotient filter is a cache efficient Approximate Membership Query (AMQ) data structure. Depending on the fill degree of the filter most insertions and queries only need to access one or two consecutive cache lines. This makes quotient filters very fast compared to the more commonly used Bloom filters that incur multiple independent memory accesses depending on the false positive rate. However, concurrent Bloom filters are easy to implement and can be implemented lock-free while concurrent quotient filters are not as simple. Usually concurrent quotient filters work by using an external array of locks - each protecting a region of the table. Accessing this array incurs one additional memory access per operation. We propose a new locking scheme that has no memory overhead. Using this new locking scheme we achieve 1.6× times higher insertion performance and over 2.1× higher query performance than with the common external locking scheme. Another advantage of quotient filters over Bloom filters is that a quotient filter can change its capacity when it is becoming full. We implement this growing technique for our concurrent quotient filters and adapt it in a way that allows unbounded growing while keeping a bounded false positive rate. We call the resulting data structure a fully expandable quotient filter. Its design is similar to scalable Bloom filters, but we exploit some concepts inherent to quotient filters to improve the space efficiency and the query speed. Additionally, we propose several quotient filter variants that are aimed to reduce the number of status bits (2-status-bit variant) or to simplify concurrent implementations (linear probing quotient filter). The linear probing quotient filter even leads to a lock-free concurrent filter implementation. This is especially interesting, since we show that any lock-free implementation of other common quotient filter variants would incur significant overheads in the form of additional data fields or multiple passes over the accessed data. The code produced as part of this submission can be found at https://www.github.com/Toobiased/lpqfilter

    Ultraviolet-Bright, High-Redshift ULIRGS

    Full text link
    We present Spitzer Space Telescope observations of the z=2.38 lya-emitter over-density associated with galaxy cluster J2143-4423, the largest known structure (110 Mpc) above z=2. We imaged 22 of the 37 known lya-emitters within the filament-like structure, using the MIPS 24um band. We detected 6 of the lya-emitters, including 3 of the 4 clouds of extended (>50 kpc) lyman alpha emission, also known as Lya Blobs. Conversion from rest-wavelength 7um to total far-infrared luminosity using locally derived correlations suggests all the detected sources are in the class of ULIRGs, with some reaching Hyper-LIRG energies. Lya blobs frequently show evidence for interaction, either in HST imaging, or the proximity of multiple MIPS sources within the Lya cloud. This connection suggests that interaction or even mergers may be related to the production of Lya blobs. A connection to mergers does not in itself help explain the origin of the Lya blobs, as most of the suggested mechanisms for creating Lya blobs (starbursts, AGN, cooling flows) could also be associated with galaxy interactions.Comment: 12 pages, 3 figures, accepted by ApJ Letter
    corecore