209 research outputs found

    Purposive Design of a Magnetic Sheet Metal Forming Facility

    Get PDF
    This paper is about the identification of lumped elements within an electric circuit diagram in the context of electromagnetic sheet metal forming. Based on fundamental physical considerations the forming coil and its workpiece can be modeled as a transformer, which is loaded on its secondary side by a resistor. A systematic oriented design process relating to an aimed at purpose is introduced in order to avoid time extensive trial-anderror methods. Based upon the theory of electromagnetic field equations, the complex impedance of the sheet metal is analytically identified as a function of the radial component. Based on the introduction of a force equivalent quantity, ways of designing and optimizing the remaining free parameters are presented. Thus, a design process for a forming facility is possible as the desired electromagnetic force can be characterized by the currents running through the forming coil and the sheet metal

    Imaging of THz waves in 2D photonic crystal structures embedded in a slab waveguide

    Get PDF
    We present space- and time-resolved simulations and measurements of single-cycle terahertz (THz) waves propagating through two-dimensional (2D) photonic crystal structures embedded in a slab waveguide. Specifically, we use a plane wave expansion technique to calculate the band structure and a time-dependent finite-element method to simulate the temporal evolution of the THz waves. Experimentally, we measure the space–time evolution of the THz waves through a coherent time-resolved imaging method. Three different structures are laser machined in LiNbO3 crystal slabs and analyzing the transmitted as well as the reflected THz waveforms allows determination of the bandgaps. Comparing the results with the calculated band diagrams and the time-dependent simulations shows that the experiments are consistent with 3D simulations, which include the slab waveguide geometry, the birefringence of the material, and a careful analysis of the excited modes within the band diagrams.Swiss National Science Foundation (project no. 200020-119934

    Menthol Suppresses Nicotinic Acetylcholine Receptor Functioning in Sensory Neurons via Allosteric Modulation

    Get PDF
    In this study, we have investigated how the function of native and recombinant nicotinic acetylcholine receptors (nAChRs) is modulated by the monoterpenoid alcohol from peppermint (−) menthol. In trigeminal neurons (TG), we found that nicotine (75 μM)-activated whole-cell currents through nAChRs were reversibly reduced by menthol in a concentration-dependent manner with an IC50 of 111 μM. To analyze the mechanism underlying menthol's action in more detail, we used single channel and whole-cell recordings from recombinant human α4β2 nAChR expressed in HEK tsA201 cells. Here, we found a shortening of channel open time and a prolongation of channel closed time, and an increase in single channel amplitude leading in summary to a reduction in single channel current. Furthermore, menthol did not affect nicotine's EC50 value for currents through recombinant human α4β2 nAChRs but caused a significant reduction in nicotine's efficacy. Taken together, these findings indicate that menthol is a negative allosteric modulator of nAChRs

    Evolution of Thermal Response Properties in a Cold-Activated TRP Channel

    Get PDF
    Animals sense changes in ambient temperature irrespective of whether core body temperature is internally maintained (homeotherms) or subject to environmental variation (poikilotherms). Here we show that a cold-sensitive ion channel, TRPM8, displays dramatically different thermal activation ranges in frogs versus mammals or birds, consistent with variations in these species' cutaneous and core body temperatures. Thus, somatosensory receptors are not static through evolution, but show functional diversity reflecting the characteristics of an organism's ecological niche

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Estrogen regulation of TRPM8 expression in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The calcium-permeable cation channel TRPM8 (melastatin-related transient receptor potential member 8) is over-expressed in several cancers. The present study aimed at investigating the expression, function and potential regulation of TRPM8 channels by ER alpha (estrogen receptor alpha) in breast cancer.</p> <p>Methods</p> <p>RT-PCR, Western blot, immuno-histochemical, and siRNA techniques were used to investigate TRPM8 expression, its regulation by estrogen receptors, and its expression in breast tissue. To investigate the channel activity in MCF-7 cells, we used the whole cell patch clamp and the calcium imaging techniques.</p> <p>Results</p> <p>TRPM8 channels are expressed at both mRNA and protein levels in the breast cancer cell line MCF-7. Bath application of the potent TRPM8 agonist Icilin (20 μM) induced a strong outwardly rectifying current at depolarizing potentials, which is associated with an elevation of cytosolic calcium concentration, consistent with established TRPM8 channel properties. RT-PCR experiments revealed a decrease in TRPM8 mRNA expression following steroid deprivation for 48 and 72 hours. In steroid deprived medium, addition of 17-beta-estradiol (E<sub>2</sub>, 10 nM) increased both TRPM8 mRNA expression and the number of cells which respond to Icilin, but failed to affect the Ca<sup>2+ </sup>entry amplitude. Moreover, silencing ERα mRNA expression with small interfering RNA reduced the expression of TRPM8. Immuno-histochemical examination of the expression of TRPM8 channels in human breast tissues revealed an over-expression of TRPM8 in breast adenocarcinomas, which is correlated with estrogen receptor positive (ER<sup>+</sup>) status of the tumours.</p> <p>Conclusion</p> <p>Taken together, these results show that TRPM8 channels are expressed and functional in breast cancer and that their expression is regulated by ER alpha.</p

    Neural progenitor cells from an adult patient with fragile X syndrome

    Get PDF
    BACKGROUND: Currently, there is no adequate animal model to study the detailed molecular biochemistry of fragile X syndrome, the leading heritable form of mental impairment. In this study, we sought to establish the use of immature neural cells derived from adult tissues as a novel model of fragile X syndrome that could be used to more fully understand the pathology of this neurogenetic disease. METHODS: By modifying published methods for the harvest of neural progenitor cells from the post-mortem human brain, neural cells were successfully harvested and grown from post-mortem brain tissue of a 25-year-old adult male with fragile X syndrome, and from brain tissue of a patient with no neurological disease. RESULTS: The cultured fragile X cells displayed many of the characteristics of neural progenitor cells, including nestin and CD133 expression, as well as the biochemical hallmarks of fragile X syndrome, including CGG repeat expansion and a lack of FMRP expression. CONCLUSION: The successful production of neural cells from an individual with fragile X syndrome opens a new avenue for the scientific study of the molecular basis of this disorder, as well as an approach for studying the efficacy of new therapeutic agents

    Olfactory and trigeminal interaction of menthol and nicotine in humans

    Get PDF
    The purpose of the study was to investigate the interactions between two stimuli—menthol and nicotine—both of which activate the olfactory and the trigeminal system. More specifically, we wanted to know whether menthol at different concentrations modulates the perception of burning and stinging pain induced by nicotine stimuli in the human nose. The study followed an eightfold randomized, double-blind, cross-over design including 20 participants. Thirty phasic nicotine stimuli at one of the two concentrations (99 and 134 ng/mL) were applied during the entire experiment every 1.5 min for 1 s; tonic menthol stimulation at one of the three concentrations (0.8, 1.5 and 3.4 μg/mL) or no-menthol (placebo control conditions) was introduced after the 15th nicotine stimulus. The perceived intensities of nicotine’s burning and stinging pain sensations, as well as perceived intensities of menthol’s odor, cooling and pain sensations, were estimated using visual analog scales. Recorded estimates of stinging and burning sensations induced by nicotine initially decreased (first half of the experiment) probably due to adaptation/habituation. Tonic menthol stimulation did not change steady-state nicotine pain intensity estimates, neither for burning nor for stinging pain. Menthol-induced odor and cooling sensations were concentration dependent when combined with low-intensity nicotine stimuli. Surprisingly, this dose dependency was eliminated when combining menthol stimuli with high-intensity nicotine stimuli. There was no such nicotine effect on menthol’s pain sensation. In summary, we detected interactions caused by nicotine on menthol perception for odor and cooling but no effect was elicited by menthol on nicotine pain sensation

    Inorganic Polyphosphate Modulates TRPM8 Channels

    Get PDF
    Polyphosphate (polyP) is an inorganic polymer built of tens to hundreds of phosphates, linked by high-energy phosphoanhydride bonds. PolyP forms complexes and modulates activities of many proteins including ion channels. Here we investigated the role of polyP in the function of the transient receptor potential melastatin 8 (TRPM8) channel. Using whole-cell patch-clamp and fluorescent calcium measurements we demonstrate that enzymatic breakdown of polyP by exopolyphosphatase (scPPX1) inhibits channel activity in human embryonic kidney and F-11 neuronal cells expressing TRPM8. We demonstrate that the TRPM8 channel protein is associated with polyP. Furthermore, addition of scPPX1 altered the voltage-dependence and blocked the activity of the purified TRPM8 channels reconstituted into planar lipid bilayers, where the activity of the channel was initiated by cold and menthol in the presence of phosphatidylinositol 4,5-biphosphate (PtdIns(4,5)P2). The biochemical analysis of the TRPM8 protein also uncovered the presence of poly-(R)-3-hydroxybutyrate (PHB), which is frequently associated with polyP. We conclude that the TRPM8 protein forms a stable complex with polyP and its presence is essential for normal channel activity
    corecore