9,131 research outputs found
Large excess of heavy nitrogen in both hydrogen cyanide and cyanogen from comet 17P/Holmes
From millimeter and optical observations of the Jupiter-family comet
17P/Holmes performed soon after its huge outburst of October 24, 2007, we
derive 14 N/15N = 139 +/- 26 in HCN, and 14N/15N = 165 +/- 40 in CN,
establishing that HCN has the same non-terrestrial isotopic composition as CN.
The same conclusion is obtained for the long-period comet C/1995 O1 (Hale-Bopp)
after a reanalysis of previously published measurements. These results are
compatible with HCN being the prime parent of CN in cometary atmospheres. The
15N excess relative to the Earth atmospheric value indicates that N-bearing
volatiles in the solar nebula underwent important N isotopic fractionation at
some stage of Solar System formation. HCN molecules never isotopically
equilibrated with the main nitrogen reservoir in the solar nebula before being
incorporated in Oort-cloud and Kuiper-belt comets. The 12C/13C ratios in HCN
and CN are measured to be consistent with the terrestrial value.Comment: Accepted for publication in the Astrophysical Journal (Letters) 4
page
Co-operative Kondo Effect in the two-channel Kondo Lattice
We discuss the possibility of a co-operative Kondo effect driven by channel
interference in a Kondo lattice where local moments are coupled to a single
Fermi sea via two orthogonal scattering channels. In this situation, the
channel quantum number is not conserved. We argue that the absence of channel
conservation causes the Kondo effect in the two channels to constructively
interfere, giving rise to a superconducting condensate of composite pairs,
formed between the local moments and the conduction electrons. Our arguments
are based on the observation that a heavy Fermi surface gives rise to zero
modes for Kondo singlets to fluctuate between screening channels of different
symmetry, producing a divergent composite pair susceptibility. Secondary
screening channels couple to these divergent fluctuations, promoting an
instability into a state with long-range composite order. We present detailed a
detailed mean-field theory for this superconducting phase, and discuss the
possible implications for heavy fermion physics.Comment: 23 double column pages. 9 fig
Magnetic properties of the frustrated AFM spinel ZnCr_2O_4 and the spin-glass Zn_{1-x}Cd_xCr_2O_4 (x=0.05,0.10)
The -dependence (2- 400 K) of the electron paramagnetic resonance (EPR),
magnetic susceptibility, , and specific heat, , of the
antiferromagnetic (AFM) spinel ZnCrO and the spin-glass
(SG) ZnCdCrO () is reported. These
systems behave as a strongly frustrated AFM and SG with K and -400 K K. At high-
the EPR intensity follows the and the -value is -independent.
The linewidth broadens as the temperature is lowered, suggesting the existence
of short range AFM correlations in the paramagnetic phase. For
ZnCrO the EPR intensity and decreases below 90 K and 50
K, respectively. These results are discussed in terms of nearest-neighbor
Cr (S %) spin-coupled pairs with an exchange coupling of 50 K. The appearance of small resonance modes for K,
the observation of a sharp drop in and a strong peak in
at K confirms, as previously reported, the existence of long range
AFM correlations in the low- phase. A comparison with recent neutron
diffraction experiments that found a near dispersionless excitation at 4.5 meV
for and a continuous gapless spectrum for ,
is also given.Comment: 17 pages, 8 figures, 1 Table. Submitted to Physical Review
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …
