182 research outputs found

    EXCITATION of COUPLED STELLAR MOTIONS in the GALACTIC DISK by ORBITING SATELLITES

    Get PDF
    We use a set of high-resolution N-body simulations of the Galactic disk to study its interactions with the population of cosmologically predicted satellites. One simulation illustrates that multiple passages of massive satellites with different velocities through the disk generate a wobble, which has the appearance of rings in face-on projections of the stellar disk. They also produce flares in the outer disk parts and gradually heat the disk through bending waves. A different numerical experiment shows that an individual satellite as massive as the Sagittarius dwarf galaxy passing through the disk will drive coupled horizontal and vertical oscillations of stars in underdense regions with small associated heating. This experiment shows that vertical excursions of stars in these low-density regions can exceed 1 kpc in the Solar neighborhood, resembling the recently locally detected coherent vertical oscillations. They can also induce non-zero vertical streaming motions as large as 10-20 km s-1, which is consistent with recent observations in the Galactic disk. This phenomenon appears as a local ring with modest associated disk heating. © 2016. The American Astronomical Society. All rights reserved

    The first survey of pome fruit viruses in Morocco

    Get PDF
    Considering the limited information on the presence and incidence of pome fruit virus and viroid diseases in Morocco, a preliminary assessment of the presence of pome fruit viruses in Morocco was carried out. Twenty orchards and nurseries were surveyed in the regions of Midelt, Meknès and Azilal. A total of 100 samples (apples and pears) were collected and tested. Biological indexing was made in a acclimatised greenhouse using the following indicators: Malus pumila cvs. ‛Spy 227’, ‛Radiant’ and ‛R 12740 7A’, and Pyrus communis cv. ‛LA/62’. All samples were also tested by ELISA for the presence of Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV) and Apple mosaic virus (ApMV). The prevailing viruses infecting apple were ACLSV (71%) and ASPV (58%), whereas ASGV was found in 12 tested trees. The same viruses were present, but less frequently, in pear: ACLSV (61%), Pear Vein Yellows Virus (PVYV) (25%) and ASGV (18%). Only four apple trees were found to be infected by ApMV. Additional RT-PCR testing confirmed the high incidence of ACLSV and ASPV.This was the first report of the presence of pome fruit viruses in Morocco, indicating the high infection rate worsened by the recent report of the presence of fire blight (Erwinia amylovora) in the country. Moreover, a total of 168 apples and 81 pears were sampled and tested for pome fruit viroids Apple scar skin viroid (ASSVd), Apple dimple fruit viroid (ADFVd) and Pear blister canker viroid (PBCVd) by tissue printing hybridization. No viroids were detected. Keywords: pome fruit, viruses, viroids, Morocco, ELISA, Tissue printing hybridization, PC

    ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS

    Get PDF
    We employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars. © 2016. The American Astronomical Society. All rights reserved

    Two fossil groups of galaxies at z~0.4 in the COSMOS: accelerated stellar-mass build-up, different progenitors

    Get PDF
    We report on 2 fossil groups of galaxies at z=0.425 and 0.372 discovered in the Cosmic Evolution Survey (COSMOS) area. Selected as X-ray extended sources, they have total masses (M_200) of 1.9(+/-0.41)E13 and 9.5(+/-0.42)E13 M_sun, respectively, as obtained from a recent X-ray luminosity-mass scaling relation. The lower mass system appears isolated, whereas the other sits in a well-known large-scale structure (LSS) populated by 27 other X-ray emitting groups. The identification as fossil is based on the i-band photometry of all the galaxies with a photo-z consistent with that of the group at the 2-sigma confidence level and within a projected group-centric distance equal to 0.5R_200, and i_AB<=22.5-mag limited spectroscopy. Both fossil groups exhibit high stellar-to-total mass ratios compared to all the X-ray selected groups of similar mass at 0.3<=z<=0.5 in the COSMOS. At variance with the composite galaxy stellar mass functions (GSMFs) of similarly massive systems, both fossil group GSMFs are dominated by passively evolving galaxies down to M^stars~1E10 M_sun (according to the galaxy broad-band spectral energy distributions). The relative lack of star-forming galaxies with 1E10<=M^stars<=1E11 M_sun is confirmed by the galaxy distribution in the b-r vs i color-magnitude diagram. Hence, the 2 fossil groups appear as more mature than the coeval, similarly massive groups. Their overall star formation activity ended rapidly after an accelerated build up of the total stellar mass; no significant infall of galaxies with M^stars>=1E10 M_sun took place in the last 3 to 6 Gyr. This similarity holds although the 2 fossil groups are embedded in two very different density environments of the LSS, which suggests that their galaxy populations were shaped by processes that do not depend on the LSS. However, their progenitors may do so. ...Comment: 12 pages, 5 color figures, 1 table; to be published in the MNRA

    Regeneration of Algerian

    Get PDF
    Stigma/style somatic embryogenesis is one of the efficient methods in plant regeneration of most Citrus ssp., without inducing somaclonal variations. Furthermore, somatic embryogenesis from style/stigma proved to be effective in the elimination of the main citrus virus and virus-like diseases. This technique was applied on Algerian citrus collection. Different Citrus species [Citrus sinensis (L.) Osbeck, C. limon (L.) Burm, C. reticulata Blanco, C. paradisi Macfad, C. reshni Hort. ex Tan., C. jambhiri Lush and C. maxima (Burm.) Merrill] were chosen and tested for the presence of the main virus and virus-like agents. Most of the genotypes showed to be infected, mainly by viroid agents. Closed flowers were collected and in vitro cultured on a Murashige and Skoog (MS) medium supplemented with 6- benzylaminopurine. All explants produced callus about 4 to 9 days after culture initiation, whereas embryogenesis occurred after 38 to 150 days in most of the cultured genotypes. Formed embryos were cultured in a single tube before in vivo acclimatization. After sanitary assays, regenerated plants were shown to be free from the agents detected in the mother trees.Key words: Algeria, citrus germplasm, plant regeneration, sanitation, somatic embryogenesis

    The Stromlo Missing Satellites Survey

    Full text link
    The Stromlo Missing Satellites (SMS) program is a critical endeavor to investigate whether cold dark matter cosmology is flawed in its ability to describe the matter distribution on galaxy scales or proves itself once again as a powerful theory to make observational predictions. The project will deliver unprecedented results on Milky Way satellite numbers, their distribution and physical properties. It is the deepest, most extended survey for optically elusive dwarf satellite galaxies to date, covering the entire 20,000 sq deg of the Southern hemisphere. 150TB of CCD images will be analysed in six photometric bands, 0.5-1.0 mag fainter than SDSS produced by the ANU SkyMapper telescope over the next five years. (For more details see: http://msowww.anu.edu.au/~jerjen/SMS_Survey.html)Comment: 4 pages, 1 figure, in "Galaxies in the Local Volume" (Sydney, 8-13 July 2007), eds B. Koribalski and H. Jerjen, Springer Astrophysics and Space Science Proceedings, p. 18

    Fossil Groups Origins: I. RX J105453.3+552102 a very massive and relaxed system at z~0.5

    Full text link
    The most accepted scenario for the origin of fossil groups (FGs) is that they are galaxy associations in which the merging rate was fast and efficient. These systems have assembled half of their mass at early epoch of the Universe, subsequently growing by minor mergers. They could contain a fossil record of the galaxy structure formation. We have started a project in order to characterize a large sample of FGs. In this paper we present the analysis of the fossil system RX J105453.3+552102. Optical deep images were used for studying the properties of the brightest group galaxy and for computing the photometric luminosity function of the group. We have also performed a detail dynamical analysis of the system based on redshift data for 116 galaxies. This galaxy system is located at z=0.47, and shows a quite large line-of-sight velocity dispersion \sigma_{v}~1000 km/s. Assuming the dynamical equilibrium, we estimated a virial mass of M ~ 10^{15} h_{70} M_{\odot}. No evidence of substructure was found within 1.4 Mpc radius. We found a statistically significant departure from Gaussianity of the group members velocities in the most external regions of the group. This could indicate the presence of galaxies in radial orbits in the external region of the group. We also found that the photometrical luminosity function is bimodal, showing a lack of M_{r} ~ -19.5 galaxies. The brightest group galaxy shows low Sersic parameter (n~2) and a small peculiar velocity. Indeed, our accurate photometry shows that the difference between the brightest and the second brightest galaxies is 1.9 mag in the r-band, while the classical definition of FGs is based on a magnitude gap of 2. We conclude that this fossil system does not follow the empirical definition of FGs. Nevertheless, it is a massive, old and undisturbed galaxy system with little infall of L^{*} galaxies since its initial collapse.Comment: 17 pages, 14 figures, accepted for publication at A&

    AN ULTRA-FAINT GALAXY CANDIDATE DISCOVERED in EARLY DATA from the MAGELLANIC SATELLITES SURVEY

    Get PDF
    We report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644-5953 (Pictor II or Pic II) is a low surface brightness (ÎĽ = 28.5+1 -1 mag arcsec-2 within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of 45+5 -4 kpc. The physical size (r1/2 = 46+15 -11) and low luminosity (Mv = -3.2+0.4 -0.5 mag) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644-5953 (Pic II) is located 11.3+3.1 -0.9 kpc from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644-5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.Peer reviewe

    Globular cluster systems in fossil groups: NGC6482, NGC1132 and ESO306-017

    Full text link
    We study the globular cluster (GC) systems in three representative fossil group galaxies: the nearest (NGC6482), the prototype (NGC1132) and the most massive known to date (ESO306-017). This is the first systematic study of GC systems in fossil groups. Using data obtained with the Hubble Space Telescope Advanced Camera for Surveys in the F475W and F850LP filters, we determine the GC color and magnitude distributions, surface number density profiles, and specific frequencies. In all three systems, the GC color distribution is bimodal, the GCs are spatially more extended than the starlight, and the red population is more concentrated than the blue. The specific frequencies seem to scale with the optical luminosities of the central galaxy and span a range similar to that of the normal bright elliptical galaxies in rich environments. We also analyze the galaxy surface brightness distributions to look for deviations from the best-fit S\'ersic profiles; we find evidence of recent dynamical interaction in all three fossil group galaxies. Using X-ray data from the literature, we find that luminosity and metallicity appear to correlate with the number of GCs and their mean color, respectively. Interestingly, although NGC6482 has the lowest mass and luminosity in our sample, its GC system has the reddest mean color, and the surrounding X-ray gas has the highest metallicity.Comment: 16 pages, 13 figures. Accepted for publication in A&
    • …
    corecore