115 research outputs found

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Identification techniques for highly boosted W bosons that decay into hadrons

    Get PDF

    Phenomenological MSSM interpretation of CMS searches in pp collisions at √s=7 and 8 TeV

    Get PDF
    Searches for new physics by the CMS collaboration are interpreted in the framework of the phenomenological minimal supersymmetric standard model (pMSSM). The data samples used in this study were collected at root s = 7 and 8 TeV and have integrated luminosities of 5.0 fb(-1) and 19.5 fb(-1), respectively. A global Bayesian analysis is performed, incorporating results from a broad range of CMS supersymmetry searches, as well as constraints from other experiments. Because the pMSSM incorporates several well-motivated assumptions that reduce the 120 parameters of the MSSM to just 19 parameters defined at the electroweak scale, it is possible to assess the results of the study in a relatively straightforward way. Approximately half of the model points in a potentially accessible subspace of the pMSSM are excluded, including all pMSSM model points with a gluino mass below 500 GeV, as well as models with a squark mass less than 300 GeV. Models with chargino and neutralino masses below 200 GeV are disfavored, but no mass range of model points can be ruled out based on the analyses considered. The nonexcluded regions in the pMSSM parameter space are characterized in terms of physical processes and key observables, and implications for future searches are discussed

    Forward-backward asymmetry of Drell-Yan lepton pairs in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for massive WH resonances decaying into the l nu b(b)over-bar final state at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    Get PDF
    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton–proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb-1 collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445–3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant αS is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of αS(MZ)=0.1171±0.0013(exp)-0.0047+0.0073(theo)

    Search for heavy neutrinos and W bosons with right-handed couplings in proton - proton collisions at \sqrt = 8TeV

    Get PDF
    A search for heavy, right-handed neutrinos, Nℓ ( ℓ=e,μ ), and right-handed WR bosons, which arise in the left-right symmetric extensions of the standard model, has been performed by the CMS experiment. The search was based on a sample of two lepton plus two jet events collected in proton–proton collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb-1 . For models with strict left-right symmetry, and assuming only one Nℓ flavor contributes significantly to the WR decay width, the region in the two-dimensional (MWR,MNℓ) mass plane excluded at a 95 % confidence level extends to approximately MWR=3.0TeV and covers a large range of neutrino masses below the WR boson mass, depending on the value of MWR . This search significantly extends the (MWR,MNℓ) exclusion region beyond previous results. Electronic supplementary material The online version of this article (doi:10.1140/epjc/s10052-014-3149-z) contains supplementary material, which is available to authorized users

    Measurement of the differential cross section for top quark pair production in pp collisions at √s=8 TeV

    Get PDF
    The normalized differential cross section for top quark pair (tt¯) production is measured in pp collisions at a centre-of-mass energy of 8TeV at the CERN LHC using the CMS detector in data corresponding to an integrated luminosity of 19.7fb-1. The measurements are performed in the lepton+jets (e/μ++jets) and in the dilepton e+e-, μ+μ-, and e±μ∓) decay channels. The tt¯ cross section is measured as a function of the kinematic properties of the charged leptons, the jets associated to b quarks, the top quarks, and the tt¯ system. The data are compared with several predictions from perturbative quantum chromodynamic up to approximate next-to-next-to-leading-order precision. No significant deviations are observed relative to the standard model predictions. © 2015, CERN for the benefit of the CMS collaboration

    Searches for supersymmetry using the M T2 variable in hadronic events produced in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are performed using a sample of hadronic events produced in 8 TeV pp collisions at the CERN LHC. The searches are based on the M T2 variable, which is a measure of the transverse momentum imbalance in an event. The data were collected with the CMS detector and correspond to an integrated luminosity of 19.5 fb-1. Two related searches are performed. The first is an inclusive search based on signal regions defined by the value of the M T2 variable, the hadronic energy in the event, the jet multiplicity, and the number of jets identified as originating from bottom quarks. The second is a search for a mass peak corresponding to a Higgs boson decaying to a bottom quark-antiquark pair, where the Higgs boson is produced as a decay product of a SUSY particle. For both searches, the principal backgrounds are evaluated with data control samples. No significant excess over the expected number of background events is observed, and exclusion limits on various SUSY models are derived
    corecore