9 research outputs found

    Microworms swallow the nanobait: The use of nanocoated microbial cells for the direct delivery of nanoparticles into Caenorhabditis elegans

    Get PDF
    The application of in vivo models in assessing the toxicity of nanomaterials is currently regarded as a promising way to investigate the effects of nanomaterials on living organisms. In this paper we introduce a novel method to deliver nanomaterials into Caenorhabditis elegans nematodes. Our approach is based on using nanoparticle-coated microbial cells as "nanobait", which are ingested by nematodes as a sole food source. We found that nematodes feed on the nanocoated bacteria (Escherichia coli) and microalgae (Chlorella pyrenoidosa) ingesting them via pharyngeal pumping, which results in localization of nanoparticles inside the digestive tract of the worms. Nanoparticles were detected exclusively inside the intestine, indicating the efficient delivery based on microbial cells. Delivery of iron oxide nanoparticles results in magnetic labelling of living nematodes, rendering them magnetically-responsive. The use of cell-mediated delivery of nanoparticles can be applied to investigate the toxicity of polymer-coated magnetic nanoparticles and citrate-capped silver nanoparticles in Caenorhabditis elegans in vivo. © 2013 The Royal Society of Chemistry

    Microworms swallow the nanobait: The use of nanocoated microbial cells for the direct delivery of nanoparticles into Caenorhabditis elegans

    No full text
    The application of in vivo models in assessing the toxicity of nanomaterials is currently regarded as a promising way to investigate the effects of nanomaterials on living organisms. In this paper we introduce a novel method to deliver nanomaterials into Caenorhabditis elegans nematodes. Our approach is based on using nanoparticle-coated microbial cells as "nanobait", which are ingested by nematodes as a sole food source. We found that nematodes feed on the nanocoated bacteria (Escherichia coli) and microalgae (Chlorella pyrenoidosa) ingesting them via pharyngeal pumping, which results in localization of nanoparticles inside the digestive tract of the worms. Nanoparticles were detected exclusively inside the intestine, indicating the efficient delivery based on microbial cells. Delivery of iron oxide nanoparticles results in magnetic labelling of living nematodes, rendering them magnetically-responsive. The use of cell-mediated delivery of nanoparticles can be applied to investigate the toxicity of polymer-coated magnetic nanoparticles and citrate-capped silver nanoparticles in Caenorhabditis elegans in vivo. © 2013 The Royal Society of Chemistry

    Microworms swallow the nanobait: The use of nanocoated microbial cells for the direct delivery of nanoparticles into Caenorhabditis elegans

    Get PDF
    The application of in vivo models in assessing the toxicity of nanomaterials is currently regarded as a promising way to investigate the effects of nanomaterials on living organisms. In this paper we introduce a novel method to deliver nanomaterials into Caenorhabditis elegans nematodes. Our approach is based on using nanoparticle-coated microbial cells as "nanobait", which are ingested by nematodes as a sole food source. We found that nematodes feed on the nanocoated bacteria (Escherichia coli) and microalgae (Chlorella pyrenoidosa) ingesting them via pharyngeal pumping, which results in localization of nanoparticles inside the digestive tract of the worms. Nanoparticles were detected exclusively inside the intestine, indicating the efficient delivery based on microbial cells. Delivery of iron oxide nanoparticles results in magnetic labelling of living nematodes, rendering them magnetically-responsive. The use of cell-mediated delivery of nanoparticles can be applied to investigate the toxicity of polymer-coated magnetic nanoparticles and citrate-capped silver nanoparticles in Caenorhabditis elegans in vivo. © 2013 The Royal Society of Chemistry

    Microworms swallow the nanobait: The use of nanocoated microbial cells for the direct delivery of nanoparticles into Caenorhabditis elegans

    No full text
    The application of in vivo models in assessing the toxicity of nanomaterials is currently regarded as a promising way to investigate the effects of nanomaterials on living organisms. In this paper we introduce a novel method to deliver nanomaterials into Caenorhabditis elegans nematodes. Our approach is based on using nanoparticle-coated microbial cells as "nanobait", which are ingested by nematodes as a sole food source. We found that nematodes feed on the nanocoated bacteria (Escherichia coli) and microalgae (Chlorella pyrenoidosa) ingesting them via pharyngeal pumping, which results in localization of nanoparticles inside the digestive tract of the worms. Nanoparticles were detected exclusively inside the intestine, indicating the efficient delivery based on microbial cells. Delivery of iron oxide nanoparticles results in magnetic labelling of living nematodes, rendering them magnetically-responsive. The use of cell-mediated delivery of nanoparticles can be applied to investigate the toxicity of polymer-coated magnetic nanoparticles and citrate-capped silver nanoparticles in Caenorhabditis elegans in vivo. © 2013 The Royal Society of Chemistry

    Coating strategies using layer-by-layer deposition for cell encapsulation

    No full text
    The layer-by-layer (LbL) deposition technique is widely used to develop multilayered films based on the directed assembly of complementary materials. In the last decade, thin multilayers prepared by LbL deposition have been applied in biological fields, namely, for cellular encapsulation, due to their versatile processing and tunable properties. Their use was suggested as an alternative approach to overcome the drawbacks of bulk hydrogels, for endocrine cells transplantation or tissue engineering approaches, as effective cytoprotective agents, or as a way to control cell division. Nanostructured multilayered materials are currently used in the nanomodification of the surfaces of single cells and cell aggregates, and are also suitable as coatings for cell-laden hydrogels or other biomaterials, which may later be transformed to highly permeable hollow capsules. In this Focus Review, we discuss the applications of LbL cell encapsulation in distinct fields, including cell therapy, regenerative medicine, and biotechnological applications. Insights regarding practical aspects required to employ LbL for cell encapsulation are also provided
    corecore