3,178 research outputs found

    Is Depression Linked to Inflammation and the Gut? An invitation to challenge the methodology of depression therapy through medication in Japan and refocusing the strategy for treatment by including inflammation treatment and incorporating gut flora management

    Get PDF
     In this paper I want to challenge the effectiveness of the present drugs used for the treatment of depression by challenging the concept that depression is only centered in the brain: treating neurotransmitters such as serotonin, norepinephrine, and dopamine. By neglecting other factors that might have even more weight in the cause of depression such as Inflammation and the influence of the human gut we are taking away valuable tools away from psychiatrists. Not only should we challenge the way present treatment of depression should be performed using more cognitive and behavioral therapies such as CBT, which operates on the basic principle that a person's moods and sense of self are intimately linked with their thoughts, and that recognizing dysfunctional thought patterns and replacing them with healthier ones can lead to improvements in mood, but by also giving psychiatrists a different group of medication that might be a more effective tool to help their suffering patients.研究論

    ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R

    Get PDF
    Kernel smoothing is one of the most widely used non-parametric data smoothing techniques. We introduce a new R package ks for multivariate kernel smoothing. Currently it contains functionality for kernel density estimation and kernel discriminant analysis. It is a comprehensive package for bandwidth matrix selection, implementing a wide range of data-driven diagonal and unconstrained bandwidth selectors.

    Quantum Internal Model Principle: Decoherence Control

    Full text link
    In this article, we study the problem of designing a Decoherence Control for quantum systems with the help of a scalable ancillary quantum control and techniques from geometric control theory, in order to successfully and completely decouple an open quantum system from its environment. We re-formulate the problem of decoherence control as a disturbance rejection scheme which also leads us to the idea of Internal Model Principle for quantum control systems which is first of its kind in the literature. It is shown that decoupling a quantum disturbance from an open quantum system, is possible only with the help of a quantum controller which takes into account the model of the environmental interaction. This is demonstrated for a simple 2-qubit system wherein the effects of decoherence are completely eliminated. The theory provides conditions to be imposed on the controller to ensure perfect decoupling. Hence the problem of decoherence control naturally gives rise to the quantum internal model principle which relates the disturbance rejecting control to the model of the environmental interaction. Classical internal model principle and disturbance decoupling focus on different aspects viz. perfect output tracking and complete decoupling of output from external disturbances respectively. However for quantum systems, the two problems come together and merge in order to produce an effective platform for decoherence control. In this article we introduce a seminal connection between disturbance decoupling and the corresponding analog for internal model principle for quantum systems.Comment: Submitted to IEEE Transactions on Automatic Control, Mar 15 2010. A basic introduction appeared in 46th IEEE CDC 2007. Acknowledgements: The authors would like to thank the Center for Quantum Information Science and Technology at Tsinghua University, R.-B. Wu, J. Zhang, J.-W. Wu, M. Jiang, C.-W. Li and G.-L. Long for their valuable comments and suggestion

    Magnetic particle plug-based assays for biomarker analysis

    Get PDF
    Conventional immunoassays offer selective and quantitative detection of a number of biomarkers, but are laborious and time-consuming. Magnetic particle-based assays allow easy and rapid selection of analytes, but still suffer from the requirement of tedious multiple reaction and washing steps. Here, we demonstrate the trapping of functionalised magnetic particles within a microchannel for performing rapid immunoassays by flushing consecutive reagent and washing solutions over the trapped particle plug. Three main studies were performed to investigate the potential of the platform for quantitative analysis of biomarkers: (i) a streptavidin-biotin binding assay; (ii) a sandwich assay of the inflammation biomarker, C-reactive protein (CRP); and (iii) detection of the steroid hormone, progesterone (P4), towards a competitive assay. Quantitative analysis with low limits of detection was demonstrated with streptavidin-biotin, while the CRP and P4 assays exhibited the ability to detect clinically relevant analytes, and all assays were completed in only 15 min. These preliminary results show the great potential of the platform for performing rapid, low volume magnetic particle plug-based assays of a range of clinical biomarkers via an exceedingly simple technique
    corecore