141 research outputs found

    The physicochemical habitat of Sclerolinum sp., at Hook Ridge hydrothermal vent, Bransfield Strait, Antarctica

    Get PDF
    At Hook Ridge hydrothermal vent, a new species of Sclerolinum (Monilifera, Siboglinidae) was found at a water depth of 1,045 m. On the basis of investigations of multicores and gravity cores, the species habitat is characterized. Sclerolinum does not occur in sediments that are most strongly influenced by hydrothermal fluids, probably because of high temperature (up to 49°C) and precipitation of siliceous crusts. About 800 individuals m-2 occur in sediments that are only weakly exposed to hydrothermal flow and have the following characteristics: 20°C (15 cm sediment depth) to 21.5°C (bottom water), 18-40 cm yr-1 advection rates, pH 5.5, <25 µmol L-1 methane, <170 µmol L-1 sulfide, and <0.0054 mol m-2 yr-1 sulfide flux. Comparison with geochemical data from other reducing sediments indicates that the two groups of Siboglinidae, Monilifera and Frenulata, occur in sediments with low sulfide concentration and flux. In contrast, sulfurbased chemosynthetic organisms that typically occur at hydrothermal vents and cold seeps (e.g., Vestimentifera, vesicomyid clams, and bacterial mats) occur in sediments with higher sulfide availability; threshold values are around 500 µmol L-1 sulfide and 0.1 mol m-2 yr-1 sulfide fluxes. We did not find typical hydrothermal vent species at Hook Ridge hydrothermal vent, which might be explained by the unfavorable physicochemical habitat: At sites inhabited by Sclerolinum, sulfide availability appears to be too low, whereas at sites with higher sulfide availability, the temperatures might be too high, siliceous crust precipitation could preclude their occurrence, or both

    Macrofaunal ecology of sedimented hydrothermal vents in the Bransfield Strait, Antarctica

    Get PDF
    Sediment-hosted hydrothermal vents, where hot, mineral-rich water flows through sediment, are poorly understood globally, both in their distribution and the ecology of individual vent fields. We explored macrofaunal community ecology at a sediment-hosted hydrothermal vent in the Southern Ocean. This is the first such study of these ecosystems outside of the Pacific and the furthest south (62ËšS) of any vent system studied. Sedimentary fauna were sampled at four sites in the Bransfield Strait (Southern Ocean), with the aim of contrasting community structure between vent and non-vent sites. Geochemical data were used to create and test a novel proxy index to quantify the degree of hydrothermal influence and its influence on deep-sea biota. Macrofaunal communities were clearly distinct between vent and non-vent sites, and diversity, richness and density declined towards maximum hydrothermal activity. This variation is in contrast to observations from similar systems in the Pacific and demonstrates the influence of factors other than chemosynthetic primary productivity in structuring infauna at deep-sea vent communities. Vent endemic fauna had limited abundance and were represented by a single siboglinid species at hydrothermally active areas, meaning that that the majority of local biota were those also found in other areas. Several taxa occupied all sampling stations but there were large differences in their relative abundances, suggesting communities were structured by niche variation rather than dispersal ability

    Isotopic evidence (<sup>87</sup>Sr/<sup>86</sup>Sr, δ<sup>7</sup>Li) for alteration of the oceanic crust at deep-rooted mud volcanoes in the Gulf of Cadiz, NE Atlantic Ocean [(Sr-87/Sr-86, delta Li-7) ]

    Get PDF
    The chemical and isotopic composition of pore fluids is presented for five deep-rooted mud volcanoes aligned on a transect across the Gulf of Cadiz continental margin at water depths between 350 and 3860 m. Generally decreasing interstitial Li concentrations and Sr-87/Sr-86 ratios with increasing distance from shore are attributed to systematically changing fluid sources across the continental margin. Although highest Li concentrations at the near-shore mud volcanoes coincide with high salinities derived from dissolution of halite and late-stage evaporites, clayey, terrigenous sediments are identified as the ultimate Li source to all pore fluids investigated. Light delta Li-7 values, partly close to those of hydrothermal vent fluids (delta Li-7: +11.9 parts per thousand), indicate that Li has been mobilized during high-temperature fluid/sediment or fluid/rock interactions in the deep sub-surface. Intense leaching of terrigenous clay has led to radiogenic Sr-87/Sr-86 ratios (similar to 0.7106) in pore fluids of the near-shore mud volcanoes. In contrast, non-radiogenic Sr-87/Sr-86 ratios (similar to 0.7075) at the distal locations are attributed to admixing of a basement-derived fluid component, carrying an isotopic signature from interaction with the basaltic crust. This inference is substantiated by temperature constraints from Li isotope equilibrium calculations suggesting exchange processes at particularly high temperatures (&gt;200 degrees C) for the least radiogenic pore fluids of the most distal location.Advective pore fluids in the off-shore reaches of the Gulf of Cadiz are influenced by successive exchange processes with both oceanic crust and terrigenous, fine-grained sediments, resulting in a chemical and isotopic signature similar to that of fluids in near-shore ridge flank hydrothermal systems. This suggests that deep-rooted mud volcanoes in the Gulf of Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent and shallow, marginal cold seep. Due to the thicker sediment coverage and slower fluid advection rates, the overall geochemical signature is shifted towards the sediment-diagenetic signal compared to ridge flank hydrothermal environments. (C) 2009 Elsevier Ltd. All rights reserved

    Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling

    Get PDF
    Hydrothermal vents are highly dynamic ecosystems and are unusually energy rich in the deep-sea. In situ hydrothermal-based productivity combined with sinking photosynthetic organic matter in a soft-sediment setting creates geochemically diverse environments, which remain poorly studied. Here, we use comprehensive set of new and existing field observations to develop a quantitative ecosystem model of a deep-sea chemosynthetic ecosystem from the most southerly hydrothermal vent system known. We find evidence of chemosynthetic production supplementing the metazoan food web both at vent sites and elsewhere in the Bransfield Strait. Endosymbiont-bearing fauna were very important in supporting the transfer of chemosynthetic carbon into the food web, particularly to higher trophic levels. Chemosynthetic production occurred at all sites to varying degrees but was generally only a small component of the total organic matter inputs to the food web, even in the most hydrothermally active areas, owing in part to a low and patchy density of vent-endemic fauna. Differences between relative abundance of faunal functional groups, resulting from environmental variability, were clear drivers of differences in biogeochemical cycling and resulted in substantially different carbon processing patterns between habitats

    Hydrothermal sediments are a source of water column Fe and Mn in the Bransfield Strait, Antarctica

    Get PDF
    Short sediment cores were collected from ∼1100 m water depth at the top of Hook Ridge, a submarine volcanic edifice in the Central Basin of the Bransfield Strait, Antarctica, to assess Fe and Mn supply to the water column. Low-temperature hydrothermal fluids advect through these sediments and, in places, subsurface H2S is present at high enough concentrations to support abundant Sclerolinum sp., an infaunal tubeworm that hosts symbiotic thiotrophic bacteria. The water column is fully oxic, and oxygen penetration depths at all sites are 2–5 cmbsf. Pore water Fe and Mn content is high within the subsurface ferruginous zone (max. 565 μmol Fe L−1, >3–7 cmbsf)—14–18 times higher than values measured at a nearby, background site of equivalent water depth. Diffusion and advection of pore waters supply significant Fe and Mn to the surface sediment. Sequential extraction of the sediment demonstrates that there is a significant enrichment in a suite of reactive, authigenic Fe minerals in the upper 0–5 cm of sediment at one site characterised by weathered crusts at the seafloor. At a site with only minor authigenic mineral surface enrichment we infer that leakage of pore water Fe and Mn from the sediment leads to enriched total dissolvable Fe and Mn in bottom waters. An Eh sensor mounted on a towed package mapped a distinct Eh signature above this coring site which is dispersed over several km at the depth of Hook Ridge. We hypothesise that the main mechanism for Fe and Mn efflux from the sediment is breach of the surface oxic layer by the abundant Sclerolinum sp., along with episodic enhancements by physical mixing and resuspension of sediment in this dynamic volcanic environment. We propose that Hook Ridge sediments are an important source of Fe and Mn to the deep waters of the Central Basin in the Bransfield Strait, where concentrations are sustained by the benthic flux, and Fe is stabilised in the water column as either colloidal phases or ligand-bound dissolved species. Entrainment of this water mass into the Drake Passage and thereby the Antarctic Circumpolar Current could provide a significant metal source to this HNLC region of the Southern Ocean if mixing and upwelling occurs before removal of this metal pool to underlying sediments. Sediment-covered volcanic ridges are common within rifted margins and may play a previously overlooked role in the global Fe cycle
    • …
    corecore