13 research outputs found

    A global threats overview for Numeniini populations: synthesising expert knowledge for a group of declining migratory birds

    Get PDF
    The Numeniini is a tribe of thirteen wader species (Scolopacidae, Charadriiformes) of which seven are near-threatened or globally threatened, including two critically endangered. To help inform conservation management and policy responses, we present the results of an expert assessment of the threats that members of this taxonomic group face across migratory flyways. Most threats are increasing in intensity, particularly in non-breeding areas, where habitat loss resulting from residential and commercial development, aquaculture, mining, transport, disturbance, problematic invasive species, pollution and climate change were regarded as having the greatest detrimental impact. Fewer threats (mining, disturbance, problematic native species and climate change) were identified as widely affecting breeding areas. Numeniini populations face the greatest number of non-breeding threats in the East Asian-Australasian Flyway, especially those associated with coastal reclamation; related threats were also identified across the Central and Atlantic Americas, and East Atlantic flyways. Threats on the breeding grounds were greatest in Central and Atlantic Americas, East Atlantic and West Asian flyways. Three priority actions were associated with monitoring and research: to monitor breeding population trends (which for species breeding in remote areas may best be achieved through surveys at key non-breeding sites), to deploy tracking technologies to identify migratory connectivity, and to monitor land-cover change across breeding and non-breeding areas. Two priority actions were focused on conservation and policy responses: to identify and effectively protect key non-breeding sites across all flyways (particularly in the East Asian - Australasian Flyway), and to implement successful conservation interventions at a sufficient scale across human-dominated landscapes for species’ recovery to be achieved. If implemented urgently, these measures in combination have the potential to alter the current population declines of many Numeniini species and provide a template for the conservation of other groups of threatened species

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Contrasting trends in two Black-tailed Godwit populations:a review of causes and recommendations

    Get PDF
    In recent decades, the West European population of Black-tailed Godwits, Limosa limosa limosa, has declined in size at a quite alarming rate, while the Icelandic population, L. l. islandica, has undergone a rapid increase in population size. These two populations have been the subject of a great deal of research, much of which has been focused on understanding the causes and consequences of the contrasting population trends. In 2007, a workshop was held during the annual conference of the International Wader Study Group at La Rochelle, France, with the aims of identifying the likely causes of the population changes and providing recommendations for future actions to improve the conservation of both populations. The available evidence strongly suggests that changes in productivity as a consequence of agricultural intensification are the most likely driver of the decline in L. l. limosa, although the concentration of much of the population in just a few sites in winter and spring is likely to exacerbate their vulnerability to future habitat changes. Agricultural and climatic changes are implicated in the expansion of L. l. islandica, and the availability of both intertidal mudflats and wet grasslands as foraging habitats appears to be very important across much of the winter range of this population. A series of recommendations for actions to conserve both populations are provided, including improving agricultural land management and protecting key passage and winter sites and habitats

    Contrasting trends in two Black-tailed Godwit populations: a review of causes and recommendations

    Get PDF
    In recent decades, the West European population of Black-tailed Godwits, Limosa limosa limosa, has declined in size at a quite alarming rate, while the Icelandic population, L. l. islandica, has undergone a rapid increase in population size. These two populations have been the subject of a great deal of research, much of which has been focused on understanding the causes and consequences of the contrasting population trends. In 2007, a workshop was held during the annual conference of the International Wader Study Group at La Rochelle, France, with the aims of identifying the likely causes of the population changes and providing recommendations for future actions to improve the conservation of both populations. The available evidence strongly suggests that changes in productivity as a consequence of agricultural intensification are the most likely driver of the decline in L. l. limosa, although the concentration of much of the population in just a few sites in winter and spring is likely to exacerbate their vulnerability to future habitat changes. Agricultural and climatic changes are implicated in the expansion of L. l. islandica, and the availability of both intertidal mudflats and wet grasslands as foraging habitats appears to be very important across much of the winter range of this population. A series of recommendations for actions to conserve both populations are provided, including improving agricultural land management and protecting key passage and winter sites and habitats
    corecore