190 research outputs found

    Censimento delle macroalghe marine bentoniche delle coste pugliesi

    Get PDF
    ItSulla base dei dati di letteratura viene presentato un catalogo delle macroalghe marine bentoniche delle coste pugliesi. La flora risulta costituita di 616 taxa a livello specifico e infraspecifico di cui 385 Rhodophyta (compresi 23 taxa inquirenda), 119 Phaeophyta (compresi 5 taxa inquirenda), 105 Chlorophyta (compresi 9 taxa inquirenda), 5 Incertae sedis, 2 Nomina nuda. Inoltre vengono elencati 13 taxa excludenda e 38 taxa identificati solo a livello generico. La flora delle coste adriatiche è risultata molto più ricca (569 specie) di quella delle coste ioniche (450 specie). Le specie comuni ai due mari sono 405, mentre quelle segnalate solo per le coste adriatiche sono 164 e solo 45 quelle esclusive delle coste ioniche. Da un punto di vista fitogeografico la flora mostra particolari affinità con flore di aree meridionali quali l'isola di Linosa, l'isola di Lampedusa e la Tunisia.EnOn the basis of literature data a check-list of the benthic marine macroalgae from Apulia is given. The list of taxa at specific and infraspecific level consists of 384 Rhodophyta (23 taxa inquirenda included), 119 Phaeophyta (5 taxa inquirenda included), 105 Chlorophyta (9 taxa inquirenda included), 5 Incertae sedis, 2 Nomina nuda. Thirteen taxa excludenda and 38 taxa identified at generic level only, are listed too. The flora of the Adriatic coast, with its 569 species, resulted richer than that of the Ionian coast consisting of 450 species. Four hundred and five species are shared by both seas, while 164 and 45 are exclusive of the Adriatic Sea and of the Ionian Sea, respectively. From a phytogeographic point of view, the Apulian flora shows affinities with floras of southern areas like Linosa Island, Lampedusa Island and Tunisia

    Development and applications of two and three component particle image velocimetry techniques for simultaneous measurement in multi-phase flows and automative fuel sprays

    Get PDF
    The introduction of a new imaging approach for simultaneous multi-phase and multi-constituent velocity measurements is the main focus of this research. The proposed approach is based on the use of a single off-the-shelf colour camera which will enable simultaneous imaging of phases/constituents which are colourtagged using fluorescent droplets and multi-wavelength illumination. Highly efficient florescent tracers used to seed the constituents are presented and their visibility in full field imaging experiments is evaluated. A commonly found problem in experimental systems using laser illumination, known as flare, is discussed and the application of the developed fluorescent tracers for its reduction is presented. A strong focus of the imaging approach proposed is its flexibility and simplicity allowing its extension to stereoscopic imaging to obtain simultaneous multi-phase/constituent 3-component measurements with the addition of a second imaging camera. Proof of principle experiments with spatially separated and well mixed flows are presented for which successful phase discrimination is obtained and the uncertainty of the measurements is estimated. The imaging system developed is applied for simultaneous air and fuel velocimetry measurements in a Gasoline Direct Injection spray for which a more detailed understating of the interaction mechanisms is required to generate improved designs. The modified imaging system and experimental setup are presented and previously unavailable simultaneous air/fuel 2 and 3-component velocity fields are presented and analysed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Coralline Algae in a Changing Mediterranean Sea: How Can We Predict Their Future, if We Do Not Know Their Present?

    Get PDF
    In this review we assess the state of knowledge for the coralline algae of the Mediterranean Sea, a group of calcareous seaweeds imperfectly known and considered highly vulnerable to long-term climate change. Corallines have occurred in the Mediterranean area for ∼140 My and are well-represented in the subsequent fossil record; for some species currently common the fossil documentation dates back to the Oligocene, with a major role in the sedimentary record of some areas. Some Mediterranean corallines are key ecosystem engineers that produce or consolidate biogenic habitats (e.g., coralligenous concretions, Lithophyllum byssoides rims, rims of articulated corallines, maerl/rhodolith beds). Although bioconstructions built by corallines exist virtually in every sea, in the Mediterranean they reach a particularly high spatial and bathymetric extent (coralligenous concretions alone are estimated to exceed 2,700 km2 in surface). Overall, composition, dynamics and responses to human disturbances of coralline-dominated communities have been well-studied; except for a few species, however, the biology of Mediterranean corallines is poorly known. In terms of diversity, 60 species of corallines are currently reported from the Mediterranean. This number, however, is based on morphological assessments and recent studies incorporating molecular data suggest that the correct estimate is probably much higher. The responses of Mediterranean corallines to climate change have been the subject of several recent studies that documented their tolerance/sensitivity to elevated temperatures and pCO2. These investigations have focused on a few species and should be extended to a wider taxonomic set

    Loss and Recovery Potential of Marine Habitats: An Experimental Study of Factors Maintaining Resilience in Subtidal Algal Forests at the Adriatic Sea

    Get PDF
    BACKGROUND: Predicting and abating the loss of natural habitats present a huge challenge in science, conservation and management. Algal forests are globally threatened by loss and severe recruitment failure, but our understanding of resilience in these systems and its potential disruption by anthropogenic factors lags well behind other habitats. We tested hypotheses regarding triggers for decline and recovery potential in subtidal forests of canopy-forming algae of the genus Cystoseira. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of historical data, and quantitative in situ observations of natural recruitment patterns we suggest that recent declines of forests along the coasts of the north Adriatic Sea were triggered by increasing cumulative impacts of natural- and human-induced habitat instability along with several extreme storm events. Clearing and transplantation experiments subsequently demonstrated that at such advanced stages of ecosystem degradation, increased substratum stability would be essential but not sufficient to reverse the loss, and that for recovery to occur removal of the new dominant space occupiers (i.e., opportunistic species including turf algae and mussels) would be required. Lack of surrounding adult canopies did not seem to impair the potential for assisted recovery, suggesting that in these systems recovery could be actively enhanced even following severe depletions. CONCLUSIONS/SIGNIFICANCE: We demonstrate that sudden habitat loss can be facilitated by long term changes in the biotic and abiotic conditions in the system, that erode the ability of natural ecosystems to absorb and recover from multiple stressors of natural and human origin. Moreover, we demonstrate that the mere restoration of environmental conditions preceding a loss, if possible, may be insufficient for ecosystem restoration, and is scarcely cost-effective. We conclude that the loss of complex marine habitats in human-dominated landscapes could be mitigated with appropriate consideration and management of incremental habitat changes and of attributes facilitating system recovery

    Mediterranean bioconstructions along the Italian coast

    Get PDF
    Marine bioconstructions are biodiversity-rich, three-dimensional biogenic structures, regulating key ecological functions of benthic ecosystems worldwide. Tropical coral reefs are outstanding for their beauty, diversity and complexity, but analogous types of bioconstructions are also present in temperate seas. The main bioconstructions in the Mediterranean Sea are represented by coralligenous formations, vermetid reefs, deep-sea cold-water corals, Lithophyllum byssoides trottoirs, coral banks formed by the shallow-water corals Cladocora caespitosa or Astroides calycularis, and sabellariid or serpulid worm reefs. Bioconstructions change the morphological and chemicophysical features of primary substrates and create new habitats for a large variety of organisms, playing pivotal roles in ecosystem functioning. In spite of their importance, Mediterranean bioconstructions have not received the same attention that tropical coral reefs have, and the knowledge of their biology, ecology and distribution is still fragmentary. All existing data about the spatial distribution of Italian bioconstructions have been collected, together with information about their growth patterns, dynamics and connectivity. The degradation of these habitats as a consequence of anthropogenic pressures (pollution, organic enrichment, fishery, coastal development, direct physical disturbance), climate change and the spread of invasive species was also investigated. The study of bioconstructions requires a holistic approach leading to a better understanding of their ecology and the application of more insightful management and conservation measures at basin scale, within ecologically coherent units based on connectivity: the cells of ecosystem functioning

    Feldmann Index

    No full text
    corecore