36 research outputs found

    Thermal Upgrade of Enzymatically Synthesized Aliphatic and Aromatic Oligoesters

    Get PDF
    The enzymatic synthesis of polyesters in solventless systems is an environmentally friendly and sustainable method for synthetizing bio-derived materials. Despite the greenness of the technique, in most cases only short oligoesters are obtained, with limited practical applications or requiring further chemical processing for their elongation. In this work, we present a catalyst-free thermal upgrade of enzymatically synthesized oligoesters. Dierent aliphatic and aromatic oligoesters were synthesized using immobilized Candida antarctica lipase B (iCaLB) as the catalyst (70 C, 24 h) yielding poly(1,4-butylene adipate) (PBA, Mw = 2200), poly(1,4-butylene isophthalate) (PBI, Mw = 1000), poly(1,4-butylene 2,5-furandicarboxylate) (PBF, Mw = 600), and poly(1,4-butylene 2,4-pyridinedicarboxylate) (PBP, Mw = 1000). These polyesters were successfully thermally treated to obtain an increase in Mw of 8.5, 2.6, 3.3, and 2.7 folds, respectively. This investigation focused on the most successful upgrade, poly(1,4-butylene adipate), then discussed the possible eect of di-ester monomers as compared to di-acids in the thermally driven polycondensation. The herein-described two-step synthesis method represents a practical and cost-eective way to synthesize higher-molecular-weight polymers without the use of toxic metal catalysts such as titanium(IV) tert-butoxide, tin(II) 2-ethylhexanoate, and in particular, antimony(IV) oxide. At the same time, the method allows for the extension of the number of reuses of the biocatalyst by preventing its exposure to extreme denaturating conditions

    Efficient Physisorption of Candida Antarctica Lipase B on Polypropylene Beads and Application for Polyester Synthesis

    Get PDF
    In the present work, Candida antarctica lipase B (CaLB) was adsorbed onto polypropylene beads using different reaction conditions, in order to investigate their influence on the immobilization process and the enzyme activity of the preparations in polymerization reactions. In general, lower salt concentrations were more favorable for the binding of enzyme to the carrier. Polymerisation of dimethyl adipate (DMA) and 1,4-butanediol (BDO) was investigated in thin-film systems at 70 °C and at both atmosphere pressure (1000 mbar) and 70 mbar. Conversion rates and molecular masses of the reaction products were compared with reactions catalyzed by CaLB in its commercially available form, known as Novozym 435 (CaLB immobilized on macroporous acrylic resin). The best results according to molecular weight and monomer conversion after 24 h reaction time were obtained with CaLB immobilized in 0.1 M Na2HPO4\NaH2PO4 buffer at pH 8, producing polyesters with 4 kDa at conversion rates of 96% under low pressure conditions. The stability of this preparation was studied in a simulated continuous polymerization process at 70 °C, 70 mbar for 4 h reaction time. The data of this continuous polymerizations show that the preparation produces lower molecular weights at lower conversion rates, but is comparable to the commercial enzyme concerning stability for 10 cycles. However, after 24 h reaction time, using our optimum preparation, higher molecular weight polyesters (4 kDa versus 3.1 kDa) were obtained when compared to Novozym 435

    Improving the Post-polymerization Modification of Bio-Based Itaconate Unsaturated Polyesters: Catalyzing Aza-Michael Additions With Reusable Iodine on Acidic Alumina

    Get PDF
    Bio-based platform molecules such as itaconic, fumaric, and muconic acid offer much promise in the formation of sustainable unsaturated polyester resins upon reaction with suitable diols and polyols. The C=C bonds present in these polyester chains allows for post-polymerization modification and such moieties are conventionally utilized in curing processes during the manufacture of coatings. The C=C modification sites can also act as points to add useful pendants which can alter the polymers final properties such as glass transition temperature, biodegradability, hardness, polarity, and strength. A commonly observed modification is the addition of secondary amines via an aza-Michael addition. Conventional procedures for the addition of amines onto itaconate polyesters require reaction times of several days as a result of undesired side reactions, in particular, the formation of the less reactive mesaconate regioisomer. The slow reversion of the mesaconate back to itaconate, followed by subsequent amine addition, is the primary reason for such extended reaction times. Herein we report our efforts toward finding a suitable catalyst for the aza-Michael addition of diethylamine onto a model substrate, dimethyl itaconate, with the aim of being able to add amine onto the itaconate units without excessive regioisomerization to the inactive mesaconate. A catalyst screen showed that iodine on acidic alumina results in an effective, heterogeneous, reusable catalyst for the investigated aza-Michael addition. Extending the study further, itaconate polyester was prepared by Candida Antartica Lipase B (CaL-B) via enzymatic polytranesterification and subsequently modified with diethylamine using the iodine on acidic alumina catalyst, dramatically reducing the required length of reaction (>70% addition after 4 h). The approach represents a multidisciplinary example whereby biocatalytic polymerization is combined with chemocatalytic modification of the resultant polyester for the formation of useful bio-based polyesters

    New bio-based monomers: : Tuneable polyester properties using branched diols from biomass

    Get PDF
    A family of monomers including 2,5-hexandiol, 2,7-octandiol, 2,5-furandicarboxylic acid (FDCA) , terephthalic acid (TA), and branched-chain adipic and pimelic acid derivatives all find a common derivation in the biomass-derived platform molecule 5-(chloromethyl)furfural (CMF). The diol monomers, previously little known to polymer chemistry, have been combined with FDCA and TA derivatives to produce a range of novel polyesters. It is shown that the use of secondary diols leads to polymers with higher glass transition temperatures (Tg) than those prepared from their primary diol equivalents. Two methods of polymerisation were investigated, the first employing activation of the aromatic diacids via the corresponding diacid chlorides and the second using a transesterification procedure. Longer chain diols were found to be more reactive than the shorter chain alternatives, generally giving rise to higher molecular weight polymers, an effect shown to be most dramatic when using the transesterification route. Finally, novel diesters with high degrees of branching in their hydrocarbon chains are introduced as potential monomers for low surface energy materials applications

    Enzyme-catalyzed synthesis of malonate polyesters and their use as metal chelating materials

    Get PDF
    Following the environmental problems caused by non-degradable plastics there is a need to synthesise greener and more sustainable polymers. In this work we describe, for the first time, the facile enzyme-catalysed synthesis of linear polyesters using dimethyl malonate as the diester. These polymers, containing a different aliphatic diol component (C4, C6 or C8), were synthesised in solventless conditions using immobilized Candida antarctica lipase B as the biocatalyst. The potential of enzymes for catalysing this reaction is compared with the unsuccessful antimony- and titanium-catalysed synthesis (T>150 °C). The application of the synthesized polymers as effective metal chelators in biphasic, green solvent systems was also described, together with the characterisation of the synthesised materials

    Safer bio-based solvents to replace toluene and tetrahydrofuran for the biocatalyzed synthesis of polyesters

    Get PDF
    With increased awareness of environmental issues caused by traditional petrochemical processes, both academia and industry are making enormous efforts towards the development of sustainable practices using renewable biomass as a feedstock. In this work, the biocatalyzed synthesis of polyesters derived from renewable monomers was performed in safer, bio-derivable organic solvents. Candida antarctica lipase B (CaLB), an enzyme belonging to the Ser-hydrolase family (adsorbed on methacrylic resin, also known as Novozym 435) was tested for its performance in the synthesis of adipate- and furandicarboxylate-based polyesters. In addition, the traditional solvents toluene and tetrahydrofuran were compared with a series of green solvents, 2,2,5,5-tetramethyloxolane, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran and pinacolone for the enzymatic polymerizations. We can conclude that the monomer conversions and molecular masses of the obtained polyesters in all the tested alternative solvents were suitable, and in some cases superior, with CaLB immobilized via physisorption on acrylic resin being the optimal biocatalyst for all reactions. Strikingly, it was found that for the majority of the new solvents, lower reaction temperatures gave comparable monomer conversions and polymers with similar molecular weights whilst pinacolone yielded better polymers with Mn > 2000 Da and conversions of over 80%

    Laminaria digitata and palmaria palmata seaweeds as natural source of catalysts for the cycloaddition of CO2 to Epoxides

    Get PDF
    Seaweed powder has been found to act as an effective catalyst for the fixation of CO2 into epoxides to generate cyclic carbonates under solvent free conditions. Model background reactions were performed using metal halides and amino acids typically found in common seaweeds which showed potassium iodide (KI) to be the most active. The efficacy of the seaweed catalysts kelp (Laminaria digitata) and dulse (Palmaria palmata) was probed based on particle size, showing that kelp possessed greater catalytic ability, achieving a maximum conversion and selectivity of 63.7% to styrene carbonate using a kelp loading of 80% by weight with respect to epoxide, 40 bar of CO2, 120◩C for 3 h. Maximizing selectivity was difficult due to the generation of diol side product from residual H2O found in kelp, along with a chlorinated by-product thought to form due to a high quantity of chloride salts in the seaweeds. Data showed there was loss of organic matter upon use of the kelp catalyst, likely due to the breakdown of organic compounds and their subsequent removal during product extraction. This was highlighted as the likely cause of loss of catalytic activity upon reuse of the Kelp catalyst

    Restricted Differentiation Potential of Progenitor Cell Populations Obtained From the Equine Superficial Digital Flexor Tendon (SDFT)

    Get PDF
    ABSTRACT: The aim of this study was to characterize stem and progenitor cell populations from the equine superficial digital flexor tendon, an energy-storing tendon with similarities to the human Achilles tendon, which is frequently injured. Using published methods for the isolation of tendon-derived stem/progenitor cells by low-density plating we found that isolated cells possessed clonogenicity but were unable to fully differentiate towards mesenchymal lineages using trilineage differentiation assays. In particular, adipogenic differentiation appeared to be restricted, as assessed by Oil Red O staining of stem/progenitor cells cultured in adipogenic medium. We then assessed whether differential adhesion to fibronectin substrates could be used to isolate a population of cells with broader differentiation potential. However we found little difference in the stem and tenogenic gene expression profile of these cells as compared to tenocytes, although the expression of thrombospondin-4 was significantly reduced in hypoxic conditions. Tendon-derived stem/progenitor cells isolated by differential adhesion to fibronectin had a similar differentiation potential to cells isolated by low density plating, and when grown in either normoxic or hypoxic conditions. In summary, we have found a restricte

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected
    corecore