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Abstract: The enzymatic synthesis of polyesters in solventless systems is an environmentally friendly

and sustainable method for synthetizing bio-derived materials. Despite the greenness of the technique,

in most cases only short oligoesters are obtained, with limited practical applications or requiring

further chemical processing for their elongation. In this work, we present a catalyst-free thermal

upgrade of enzymatically synthesized oligoesters. Different aliphatic and aromatic oligoesters

were synthesized using immobilized Candida antarctica lipase B (iCaLB) as the catalyst (70 ◦C, 24

h) yielding poly(1,4-butylene adipate) (PBA, Mw = 2200), poly(1,4-butylene isophthalate) (PBI,

Mw = 1000), poly(1,4-butylene 2,5-furandicarboxylate) (PBF, Mw = 600), and poly(1,4-butylene

2,4-pyridinedicarboxylate) (PBP, Mw = 1000). These polyesters were successfully thermally treated

to obtain an increase in Mw of 8.5, 2.6, 3.3, and 2.7 folds, respectively. This investigation focused

on the most successful upgrade, poly(1,4-butylene adipate), then discussed the possible effect

of di-ester monomers as compared to di-acids in the thermally driven polycondensation. The

herein-described two-step synthesis method represents a practical and cost-effective way to synthesize

higher-molecular-weight polymers without the use of toxic metal catalysts such as titanium(IV)

tert-butoxide, tin(II) 2-ethylhexanoate, and in particular, antimony(IV) oxide. At the same time, the

method allows for the extension of the number of reuses of the biocatalyst by preventing its exposure

to extreme denaturating conditions.

Keywords: bio-based polyesters; enzymatic synthesis; polycondensation; thermal upgrade; metal-free

synthesis; biocatalyzed process; solventless reactions

1. Introduction

Due to their remarkable catalytic efficiency, enzymes are attractive and sustainable alternatives to

toxic catalysts (such as antimony and titanium) commonly used in polycondensation and ring-opening

polymerizations (such as tin). Candida antarctica lipase B (CaLB), a lipase isolated from a yeast, is the

most frequently used enzyme for transesterification reactions due to its ability to work efficiently in

low-water environments and in a wide range of organic solvents [1–3] at temperatures up to 100 ◦C [4,5].

The use of an enzyme catalyst for polyester synthesis is usually required when a high selectivity of the
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reaction is desired (e.g., the esterification of primary hydroxy groups only when glycerol is used as the

diol) [6,7] and when temperature-sensitive moieties (such as itaconic acid, 1,4-cyclohexanedimethanol,

and sorbitol) are used. Such monomers suffer from several side reaction such as C=C regioisomerization

and cross-linking (itaconic acid) [8,9], thermal decomposition (1,4-cyclohexanedimethanol) [10], or

dehydration (sorbitol) [11] under the harsh reaction conditions usually required by conventional

chemical processes (t > 180 ◦C). Despite the high selectivity and the greenness of enzymatic synthesis,

one of the main limitations of the enzymatically synthesized polyesters (relative to chemocatalytic

equivalents) is the typically lower molecular weight of the isolated products. The industrial-scale

enzymatic synthesis of polyesters was a challenge that was first tackled in the 1990s when Baxenden

Chemicals (UK) transferred the general concept of enzyme-catalyzed condensation of polyols and

diacids to a multi-kg scale, with the final goal of obtaining highly regular polymeric structures for

coating and adhesive applications [12]. This plant is now decommissioned, and the development

of new chemo-enzymatic synthesis technologies, which allow the synthesis of structure-controlled

polymers with high molecular weights and low operational costs, remains a challenge.

To improve the increase in the molecular weights of enzymatically synthesized polyesters, several

synthetic methods have been reported that use high-boiling solvents, which drive the reaction to

completion and promote elongation of the polyester chain by stripping out the condensate byproduct

(usually an alcohol or water) from the reaction system [2,3,11]. Unfortunately, the scale-up of such

procedures is complicated due to the use of various solvents required for polymer isolation (diphenyl

ether for the reaction, chloroform for the filtration step, and methanol for the precipitation of the

polymer).

Notably, azeotropic water removal by aromatic solvents in the presence of acid catalysts favors

cyclic ether formation due to diol cyclization in dilute systems [13,14]. The limitation of chain growth

by diol cyclization is a common problem when reactions in solution are concerned [15], thus supporting

the application of solventless conditions.

In an earlier study by the current authors, solvent-free polycondensation of adipic acid (AA) and

1,4-butanediol (BDO) was carried out in two steps, with the objective of promoting the elongation of

the polyester chain while preserving the integrity of the immobilized biocatalyst [12]. A first step was

performed at 50 ◦C at atmospheric pressure in the presence of the enzyme. The biocatalyst was then

removed, and the second step was initiated by increasing the temperature to 80 ◦C under reduced

pressure (70 mbar). Reduced pressure was necessary as uncatalyzed polycondensations of alcohols with

carboxylic acids have low equilibrium constants (generally KC < 10), so water, obtained as a reaction

byproduct, had to be efficiently removed from the reaction mixture in order to obtain a reasonable

degree of polymerization [16]. Under such conditions, modest progress of the polycondensation was

observed after 72 h. The removal of the biocatalyst after the synthesis of oligomers is appealing, since

the viscosity increases as the reaction proceeds, and the recovery of the biocatalyst becomes significantly

more challenging. The same authors reported a more striking elongation of the polyester chain by

performing the two-step procedure in a turbo-reactor under thin-film conditions and atmospheric

pressure [17]. The first biocatalyzed step at 60 ◦C yielded oligomers with an average molecular weight

(Mn) of ~1800, whereas the second catalyst-free step at 90 ◦C led to an improvement of Mn up to 2900.

It must be noted that the polyesterification in the absence of the biocatalyst is already a well-known

reaction, with the mechanism and kinetics of the self-catalyzed polyesterification reactions of AA and

diols that have been reported before [18,19]. Briefly, protons dissociate from the diacid molecules

but continue to weakly coordinate with the diacid molecules. This suggests that the self-catalyzed

polyesterification is promoted by such coordinating protons [20].

However, no detailed study on the catalyst-free polycondensation of di-esters has been reported

so far. The evidence above prompted us to explore how to exploit the two-step procedures for the

solventless synthesis of both aliphatic and aromatic short oligomers, using adipate, isophthalate, furan,

and pyridine diesters as models (Scheme 1). In this way, the reaction products can be easily separated

from the biocatalyst in a single filtration step, allowing the obtained oligomers to be further processed
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via a catalyst-free thermal upgrade to oligomers and polymers of higher molecular weights which are

suitable for a whole series of applications.

 

Đ

Scheme 1. Aliphatic and aromatic diesters used as starting materials for the enzymatic synthesis of

bio-based and petroleum-based oligoesters. All polyesters in this work were synthesized from these

diesters and from 1,4-butanediol (1,4-BDO) as the aliphatic, linear diol.

2. Results and Discussion

2.1. Enzymatic Synthesis of Aliphatic and Aromatic Oligoesters

The solventless, enzyme-catalyzed synthesis of short aliphatic and aromatic oligoesters

was conducted following previously published procedures [2,21,22]. Poly(1,4-butylene adipate)

(PBA), poly(1,4-butylene isophthalate) (PBI), poly(1,4-butylene 2,5-furandicarboxylate) (PBF), and

poly(1,4-butylene 2,4-pyridinedicarboxylate) (PBP) were successfully synthesized and their properties

are shown in Table 1 in comparison to the same polyesters synthesized at 85 ◦C without enzymes [2,23].

Table 1. Enzymatic synthesis of aliphatic and aromatic oligoesters at various temperatures in solventless

reaction systems.

Polymer Synthesis t (◦C)
Monomers

Conversion * (%)
Mn

+ (Da) Mw
+ (Da) Đ

+ Reference

PBA a
50 96 1900 5400 2.89 This work

85 96 4200 6400 1.53 [23]

PBI
50 81 700 1000 1.41 This work

85 84 900 1500 1.62 [2]

PBF
50 78 500 600 1.19 This work

85 79 600 900 1.34 [2]

PBP
50 80 600 1000 1.52 This work

85 82 800 1400 1.65 [2]

* Calculated via 1H-NMR; + Calculated via GPC; a Synthesized using dibutyl adipate (DBA) as the aliphatic diester.

In addition, the reactions were conducted at a lower reaction temperature compared to previous

works on the topic, with the ambition of improving biocatalyst recyclability. Despite most studies in

the literature reporting the synthesis of polyesters using CaLB at temperatures around 85 ◦C [2,23], it is

widely known that lower reaction temperatures ensure the preservation of the enzyme’s activity over

repeated reaction cycles [12]. With the immobilized biocatalyst being the most expensive component
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of the system, its recyclability is a key parameter to consider when conducting polycondensation

reactions [24]. The synthesized oligoesters can have several applications upon end chain endcapping

and cross-linking as detailed in Scheme 2.

 

 

Scheme 2. Potential use of the enzymatically synthesized oligoesters using a reaction temperature of 85
◦C. Synthesis of amphiphile polyesters (top) and coupling with acrylates for the formation of bio-based

coatings upon cross-linking (bottom). The utilization of the enzymatically synthesized oligoesters will

be presented in a future full paper.

2.2. Catalyst-Free Thermal Upgrade of the Enzymatically Synthesized Oligoesters

After the removal of the biocatalyst (via filtration) and of the work-up solvent (via rotary

evaporation), the enzymatically synthesized oligoesters were subjected to temperatures ranging

from 140 to 180 ◦C in three different conditions: air, under a 1 mbar vacuum, and under an inert

N2 atmosphere.

All performed thermal upgrades were successful (Figure 1) and led to an increase in the degree

of polymerization (as evidenced by the increased number-average molecular weight (Mn) and

weight-average molecular weight (Mw)) of the enzymatically synthesized oligoesters.
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Figure 1. Molecular weight analysis of the catalyst-free thermal upgrade of the enzymatically

synthesized oligoesters. (a) Poly(1,4-butylene isophthalate) (PBI), (b) poly(1,4-butylene adipate) (PBA)

synthesized starting from dibutyl adipate (DBA), (c) poly(1,4-butylene 2,5-furandicarboxylate) (PBF),

and (d) poly(1,4-butylene 2,4-pyridinedicarboxylate) (PBP). White bars = Number-Average Molecular

Weight (Mn); grey bars =Weight-Average Molecular Weight (Mw).

The enzymatically synthesized PBI’s weight-average molecular weight increased 2.6 times (Mw

increasing from 1000 to 2600 Da) when using 180 ◦C and an air atmosphere, and 2.3 times (Mw

increasing from 1000 to 2300 Da) when using 160 ◦C and a N2 atmosphere. All other tested conditions

also led to slightly higher molecular weights, but the increases were less pronounced than the two

described above (Figure 1a). For diethyl isophthalate (DEI) as the diester, it seems that a higher reaction

temperature leads to a better chain elongation, whereas applying a vacuum does not have any major

influence on the oligomers. DEI is known to be a temperature-stable molecule (usually polymerized

chemo-catalytically at 260 ◦C [25]) and all produced materials result in white-colored polymers (see

Supplementary Materials Figure S1). Upgrade of the aliphatic oligoester PBA was the most successful

in this study, since the weight-average molecular weight of the initial oligomers increased from 5400

Da to over 18,000 Da when conducting the upgrades under vacuum. Of note is that the thermal

upgrade in the air is not feasible since the reaction mixture quickly changes color from white (starting

oligomers after enzymatic synthesis, see Supplementary Materials Figure S2) to yellowish and dark

brown when reaction temperatures above 140 ◦C are used (see Supplementary Materials Figure S3).

The formation of colored reaction products, together with the almost-absent increase of the oligomer’s

molecular weight, is a clear sign that temperature-related side reactions occur with the consequent

partial degradation of parts of the oligomers.
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In conclusion, the fact that the thermal treatment of polyesters in vacuum resulted in a successful

upgrade of the oligomers is in line with previous results reported for the synthesis of PBA starting from

adipic acid [12,17]. It is known that the self-catalyzed polyesterifications follow third-order kinetics,

with a second-order dependence on the carboxyl group concentration, and a first-order dependence

on the hydroxyl group concentration. However, also in the case of the alcoholysis of esters, once a

mixture of short oligomers is formed, the polycondensation proceeds without the need for the external

addition of the catalyst, thus suggesting the role of entropic factors in driving the process. Indeed,

studies of the kinetics of polycondensation reported models describing the increase of the reaction

order as the esterification proceeds, demonstrating that by increasing the Mn the reaction can proceed

at lower temperatures [26].

The present data show that furan and pyridine moieties have similar temperature sensitivities,

which led to rapid coloration of the reaction products (and a slight increase of the molecular weights)

when the thermal upgrade was conducted in air (see Supplementary Materials Figures S4 and S5).

Despite an increase of the molecular weights for the reactions conducted in air, the best results in

terms of chain extension were obtained for the reactions under vacuum that led to a 3.3 and a 2.7 times

higher Mw for PBF and PBP, respectively, without leading to significant changes in the coloration of

the reaction product.

3. Materials and Methods

3.1. Materials and Enzymes

1,4-butanediol (1,4-BDO) was purchased from Alfa Aesar (Haverhill, MA, USA). Dimethyl adipate

(DMA) was purchased from Acros Organics (Waltham, MA, USA). Diethyl isophthalate (DEI) was

purchased from Syntree Inc. (Hangzhou, China). Diethyl-2,5-furandicarboxylate (DEF) and diethyl

pyridine-2,4-dicarboxylate (PD24) were purchased from Carbosynth (Compton, UK). Dibutyl adipate

(DBA) and all other chemicals and solvents were purchased from Sigma-Aldrich (St. Louis, MI, USA)

and used without further purification. Lipase B from Candida antarctica (CaLB) immobilized onto

methacrylic resin was also purchased from Sigma-Aldrich (product code L4777, also known as N435).

The enzyme was dried under vacuum for 48 h at 25 ◦C and stored in a desiccator prior to use.

3.2. Enzymatic Synthesis of Aliphatic and Aromatic Oligoesters

Dicarboxylic acid ester (A, 0.006 mol) and linear diol (B, 0.006 mol) (diester/diol ratio = 1.0:1.0)

were added in a 25 mL round-bottom flask. The monomer’s mixture was stirred at 50 ◦C until a

homogeneous melt was obtained. Then 10% w w−1 (calculated on the total amount of the monomers) of

immobilized CaLB was added to the monomer’s mixture, and the reaction was run for 6 h at a pressure

of 1000 mbar. A vacuum of 20 mbar was subsequently applied for an additional 18 h, maintaining the

reaction temperature at 50 ◦C (total reaction time of 24 h). The reaction products were recovered by

adding tetrahydrofuran (THF) (aliphatic polyesters) or dichloromethane (DCM) (aromatic polyesters)

to dissolve the solid reaction products. The biocatalyst was then removed via a filtration step and the

solvent evaporated via rotary evaporation. The polymers were then characterized without additional

purification steps.

3.3. Catalyst-Free Thermal Upgrade of Oligomers

For the thermal upgrades, 30 mg of enzymatically synthesized oligomers were added in an 8 mL

flat-bottomed vial, together with a magnetic stirring bar. The vial was then heated up to 140, 160, or

180 ◦C under the appropriate N2/air atmosphere or vacuum, and left stirring at 400 rpm for 24 h. After

the upgrade, the reaction mixture was analyzed without prior purification steps.
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3.4. Nuclear Magnetic Resonance (NMR) Spectroscopy

1H-NMR analysis was performed on a JEOL JNM-ECS400A spectrometer (JEOL, Peabody, MA,

USA) at a frequency of 400 MHz. CDCl3 was used as the NMR solvent for all synthesized polymers.

Please see Supplementary Information, Figures S6–S10 for the 1H-NMR spectra of the PBA polymers,

Figures S11–S15 for the 1H-NMR spectra of the PBI polymers, Figures S16–S20 for the 1H-NMR spectra

of the PBF polymers and Figures S21–S25 for the 1H-NMR spectra of the PBP polymers.

3.5. Gel Permeation Chromatography (GPC)

Samples were dissolved in CHCl3 (final concentration ~1 mg mL−1) and filtered through a cotton

filter into an HPLC vial. Gel permeation chromatography was carried out at a temperature of 30 ◦C

on an Agilent Technologies HPLC System (Agilent Technologies 1260 Infinity, Agilent Technologies,

Santa Clara, CA, USA) equipped with a 17369 6.0 mm ID × 40 mm L HHR-H, 5 µm Guard column,

and an 18055 7.8 mm ID × 300 mm L GMHHR-N, 5 µm TSKgel liquid chromatography column

(Tosoh Bioscience, Tessenderlo, Belgium). Mobile phase was CHCl3 at a flow rate of 1 mL min−1.

A refractive index detector (Agilent Technologies G1362A) was employed for the detection of the

obtained oligomers. A linear polystyrene-calibration standard curve was used for determining the

molecular weights of the synthesized polymers.

3.6. Matrix-Assisted Laser Desorption Ionization (MALDI)

MALDI-TOF MS analyses were carried out using a Bruker Solarix-XR FTICR mass spectrometer

and the relative software package for the acquisition and the processing of the data. The used

acceleration voltage was 25 kV. DCTB was selected as the matrix and KTFA as the ionization agent.

Then 10 µL of sample were mixed with 10 µL of matrix solution (40 mg mL−1 DCTB in THF) and 3 µL

of KTFA (5 mg mL−1). The mixture (0.3 µL) was applied on the plate. The measurement of all samples

was conducted in positive mode. The detector was set in reflector mode.

4. Conclusions

The potential of thermal treatments for the chain elongation of enzymatically synthesized

polyesters was studied. Candida antarctica lipase B was used for the synthesis of various

aliphatic and aromatic oligoesters, namely poly(1,4-butylene adipate) (Mn = 1000 g mol−1,

Mw = 2200 g mol−1), poly(1,4-butylene isophthalate) (Mn = 700 mol−1, Mw = 1000 g mol−1),

poly(1,4-butylene 2,5-furandicarboxylate) (Mn = 500 g mol−1, Mw = 600 g mol−1), and poly(1,4-butylene

2,4-pyridinedicarboxylate) (Mn = 600 g mol−1, Mw = 1000 g mol−1). A thermal, catalyst-free treatment

of these oligoesters was performed, yielding polymers having, respectively, 8.5, 2.6, 3.3, and 2.7 times

higher weight-average molecular weights than the initial oligomers. This two-step strategy allows the

greening of high molecular weight bio-based polyester synthesis, since no solvents or toxic metal and

acid catalysts are used in the process.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/2/368/s1,
Figure S1. Thermal upgrade of poly(1,4-butylene isophthalate) (PBI) conducted in air at 140 ◦C (left), 160 ◦C
(centre), and 180 ◦C (right); Figure S2. Enzymatically synthesized poly(1,4-butylene adipate) (PBA) before
conducting any thermal upgrade; Figure S3. Thermal upgrade of poly(1,4-butylene adipate) (PBA) conducted
in air at 140 ◦C (left), 160 ◦C (centre), and 180 ◦C (right); Figure S4. Thermal upgrade of poly(1,4-butylene
2,5-furanoate) (PBF) conducted in air at 140 ◦C (left), 160 ◦C (centre), and 180 ◦C (right); Figure S5. Thermal
upgrade of poly(1,4-butylene 2,4-pyridinoate) (PBP) conducted in air at 140 ◦C (left), 160 ◦C (centre), and 180 ◦C

(right); Figure S6. 1H-NMR analysis of poly(1,4-butylene adipate) after the initial, solventless enzymatic synthesis

step; Figure S7. 1H-NMR analysis of poly(1,4-butylene adipate) after the thermal upgrade conducted at 150 ◦C

under vacuum; Figure S8. 1H-NMR analysis of poly(1,4-butylene adipate) after the thermal upgrade conducted at

140 ◦C under air; Figure S9. 1H-NMR analysis of poly(1,4-butylene adipate) after the thermal upgrade conducted at

160 ◦C under air; Figure S10. 1H-NMR analysis of poly(1,4-butylene adipate) after the thermal upgrade conducted

at 180 ◦C under air; Figure S11. 1H-NMR analysis of poly(1,4-butylene isophthalate) after the initial, solventless

enzymatic synthesis step; Figure S12. 1H-NMR analysis of poly(1,4-butylene isophthalate) after the thermal
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upgrade conducted at 150 ◦C under vacuum; Figure S13. 1H-NMR analysis of poly(1,4-butylene isophthalate)

after the thermal upgrade conducted at 140 ◦C under air; Figure S14. 1H-NMR analysis of poly(1,4-butylene

isophthalate) after the thermal upgrade conducted at 160 ◦C under air; Figure S15. 1H-NMR analysis of

poly(1,4-butylene isophthalate) after the thermal upgrade conducted at 180 ◦C under air; Figure S16. 1H-NMR
analysis of poly(1,4-butylene 2,5-furanoate) after the initial, solventless enzymatic synthesis step; Figure S17.
1H-NMR analysis of poly(1,4-butylene 2,5-furanoate) after the thermal upgrade conducted at 150 ◦C under vacuum;

Figure S18. 1H-NMR analysis of poly(1,4-butylene 2,5-furanoate) after the thermal upgrade conducted at 140 ◦C

under air; Figure S19. 1H-NMR analysis of poly(1,4-butylene 2,5-furanoate) after the thermal upgrade conducted

at 160 ◦C under air; Figure S20. 1H-NMR analysis of poly(1,4-butylene 2,5-furanoate) after the thermal upgrade

conducted at 180 ◦C under air; Figure S21. 1H-NMR analysis of poly(1,4-butylene 2,4-pyridinedicarboxylate)

after the initial, solventless enzymatic synthesis step; Figure S22. 1H-NMR analysis of poly(1,4-butylene

2,4-pyridinedicarboxylate) after the thermal upgrade conducted at 150 ◦C under vacuum; Figure S23. 1H-NMR
analysis of poly(1,4-butylene 2,4-pyridinedicarboxylate) after the thermal upgrade conducted at 140 ◦C under

air; Figure S24. 1H-NMR analysis of poly(1,4-butylene 2,4-pyridinedicarboxylate) after the thermal upgrade

conducted at 160 ◦C under air; Figure S25. 1H-NMR analysis of poly(1,4-butylene 2,4-pyridinedicarboxylate) after
the thermal upgrade conducted at 180 ◦C under air.
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