4,679 research outputs found

    Birds and people in Europe

    Get PDF
    At a regional scale, species richness and human population size are frequently positively correlated across space. Such patterns may arise because both species richness and human density increase with energy availability. If the species-energy relationship is generated through the 'more individuals' hypothesis, then the prediction is that areas with high human densities will also support greater numbers of individuals from other taxa. We use the unique data available for the breeding birds in Europe to test this prediction. Overall regional densities of bird species are higher in areas with more people; species of conservation concern exhibit the same pattern. Avian density also increases faster with human density than does avian biomass, indicating that areas with a higher human density have a higher proportion of small-bodied individuals. The analyses also underline the low numbers of breeding birds in Europe relative to humans, with a median of just three individual birds per person, and 4 g of bird for every kilogram of human

    A note on the exact solution of asset pricing models with habit persistence

    Get PDF
    This paper provides a closed-form solution to a standard asset pricing model with habit formation when the growth rate of endowment follows a first-order Gaussian autoregressive process. We determine conditions that guarantee the existence of a stationary bounded equilibrium. The findings are useful because they allow to evaluate the accuracy of various approximation methods to nonlinear rational expectation models. Furthermore, they can be used to perform simulation experiments to study the finite sample properties of various estimation methods.Fabrice Collard, Patrick Fève and Imen Ghattass

    Raman spectroscopy study of curvature-mediated lipid packing and sorting in single lipid vesicles

    Get PDF
    Cellular plasma membrane deformability and stability is important in a range of biological processes. Changes in local curvature of the membrane affects the lateral movement of lipids, affecting the biophysical properties of the membrane. An integrated holographic optical tweezers (HOT) and Raman microscope was used to investigate the effect of curvature gradients induced by optically stretching individual giant unilamelar vesicles (GUV) on lipid packing and lateral segregation of cholesterol in the bilayer. The spatially-resolved Raman analysis enabled detection of induced phase separation and changes in lipid ordering in individual GUVs. Using deuterated cholesterol, the changes in lipid ordering and phase separation were linked to lateral sorting of cholesterol in the stretched GUVs. Stretching the GUVs in the range of elongation factors 1-1.3 led to an overall decrease in cholesterol concentration at the edges compared to the centre of stretched GUVs. The Raman spectroscopy results were consistent with a model of the bilayer accounting for cholesterol sorting in both bilayer leaflets, with a compositional asymmetry of 0.63±0.04 in favour of the outer leaflet. The results demonstrate the potential of the integrated HOT-Raman technique to induce deformations to individual lipid vesicles and to simultaneously provide quantitative and spatially-resolved molecular information. Future studies can extend to include more realistic models of cell membranes and potentially live cells

    Charge Symmetry Breaking in 500 MeV Nucleon-Trinucleon Scattering

    Get PDF
    Elastic nucleon scattering from the 3He and 3H mirror nuclei is examined as a test of charge symmetry violation. The differential cross-sections are calculated at 500 MeV using a microsopic, momentum-space optical potential including the full coupling of two spin 1/2 particles and an exact treatment of the Coulomb force. The charge-symmetry-breaking effects investigated arise from a violation within the nuclear structure, from the p-nucleus Coulomb force, and from the mass-differences of the charge symmetric states. Measurements likely to reveal reliable information are noted.Comment: 5 page

    Observing Sea States

    Get PDF
    Sea state information is needed for many applications, ranging from safety at sea and on the coast, for which real time data are essential, to planning and design needs for infrastructure that require long time series. The definition of the wave climate and its possible evolution requires high resolution data, and knowledge on possible drift in the observing system. Sea state is also an important climate variable that enters in air-sea fluxes parameterizations. Finally, sea state patterns can reveal the intensity of storms and associated climate patterns at large scales, and the intensity of currents at small scales. A synthesis of user requirements leads to requests for spatial resolution at kilometer scales, and estimations of trends of a few centimeters per decade. Such requirements cannot be met by observations alone in the foreseeable future, and numerical wave models can be combined with in situ and remote sensing data to achieve the required resolution. As today's models are far from perfect, observations are critical in providing forcing data, namely winds, currents and ice, and validation data, in particular for frequency and direction information, and extreme wave heights. In situ and satellite observations are particularly critical for the correction and calibration of significant wave heights to ensure the stability of model time series. A number of developments are underway for extending the capabilities of satellites and in situ observing systems. These include the generalization of directional measurements, an easier exchange of moored buoy data, the measurement of waves on drifting buoys, the evolution of satellite altimeter technology, and the measurement of directional wave spectra from satellite radar instruments. For each of these observing systems, the stability of the data is a very important issue. The combination of the different data sources, including numerical models, can help better fulfill the needs of users

    The HLA class II allele DRB1*1501 is over-represented in patients with idiopathic pulmonary fibrosis

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and medically refractory lung disease with a grim prognosis. Although the etiology of IPF remains perplexing, abnormal adaptive immune responses are evident in many afflicted patients. We hypothesized that perturbations of human leukocyte antigen (HLA) allele frequencies, which are often seen among patients with immunologic diseases, may also be present in IPF patients. Methods/Principal Findings: HLA alleles were determined in subpopulations of IPF and normal subjects using molecular typing methods. HLA-DRB1*15 was over-represented in a discovery cohort of 79 Caucasian IPF subjects who had lung transplantations at the University of Pittsburgh (36.7%) compared to normal reference populations. These findings were prospectively replicated in a validation cohort of 196 additional IPF subjects from four other U.S. medical centers that included both ambulatory patients and lung transplantation recipients. High-resolution typing was used to further define specific HLA-DRB1*15 alleles. DRB1*1501 prevalence in IPF subjects was similar among the 143 ambulatory patients and 132 transplant recipients (31.5% and 34.8%, respectively, p = 0.55). The aggregate prevalence of DRB1*1501 in IPF patients was significantly greater than among 285 healthy controls (33.1% vs. 20.0%, respectively, OR 2.0; 95%CI 1.3-2.9, p = 0.0004). IPF patients with DRB1*1501 (n = 91) tended to have decreased diffusing capacities for carbon monoxide (DLCO) compared to the 184 disease subjects who lacked this allele (37.8±1.7% vs. 42.8±1.4%, p = 0.036). Conclusions/Significance: DRB1*1501 is more prevalent among IPF patients than normal subjects, and may be associated with greater impairment of gas exchange. These data are novel evidence that immunogenetic processes can play a role in the susceptibility to and/or manifestations of IPF. Findings here of a disease association at the HLA-DR locus have broad pathogenic implications, illustrate a specific chromosomal area for incremental, targeted genomic study, and may identify a distinct clinical phenotype among patients with this enigmatic, morbid lung disease

    Understanding the Effects of Training on Underwater Undulatory Swimming Performance and Kinematics

    Get PDF
    In swimming, the underwater phase after the start and turn comprises gliding and dolphin kicking, with the latter also known as underwater undulatory swimming (UUS). Swimming performance is highly dependent on the underwater phase; therefore, understanding the training effects in UUS and underwater gliding can be critical for swimmers and coaches. Further, the development of technique in young swimmers can lead to exponential benefits in an athlete’s career. This study aimed to evaluate the effects of a training protocol on UUS and underwater gliding performance and kinematics in young swimmers. Seventeen age group swimmers (boys = 10, girls = 7) performed maximal UUS and underwater gliding efforts before and after a seven-week training protocol. Time to reach 10 m; intra-cyclic mean, peak, and minimum velocities; and gliding performance improved significantly after the training protocol. The UUS performance improvement was mostly produced by an improvement of the upbeat execution, together with a likely reduction of swimmers’ hydrodynamic drag. Despite the changes in UUS and gliding, performance was also likely influenced by growth. The findings from this study highlight kinematic variables that can be used to understand and quantify changes in UUS and gliding performance

    The Peripheral Blood Transcriptome Identifies the Presence and Extent of Disease in Idiopathic Pulmonary Fibrosis

    Get PDF
    <div><h3>Rationale</h3><p>Peripheral blood biomarkers are needed to identify and determine the extent of idiopathic pulmonary fibrosis (IPF). Current physiologic and radiographic prognostic indicators diagnose IPF too late in the course of disease. We hypothesize that peripheral blood biomarkers will identify disease in its early stages, and facilitate monitoring for disease progression.</p> <h3>Methods</h3><p>Gene expression profiles of peripheral blood RNA from 130 IPF patients were collected on Agilent microarrays. Significance analysis of microarrays (SAM) with a false discovery rate (FDR) of 1% was utilized to identify genes that were differentially-expressed in samples categorized based on percent predicted D<sub>L</sub>CO and FVC.</p> <h3>Main Measurements and Results</h3><p>At 1% FDR, 1428 genes were differentially-expressed in mild IPF (D<sub>L</sub>CO >65%) compared to controls and 2790 transcripts were differentially- expressed in severe IPF (D<sub>L</sub>CO >35%) compared to controls. When categorized by percent predicted D<sub>L</sub>CO, SAM demonstrated 13 differentially-expressed transcripts between mild and severe IPF (< 5% FDR). These include CAMP, CEACAM6, CTSG, DEFA3 and A4, OLFM4, HLTF, PACSIN1, GABBR1, IGHM, and 3 unknown genes. Principal component analysis (PCA) was performed to determine outliers based on severity of disease, and demonstrated 1 mild case to be clinically misclassified as a severe case of IPF. No differentially-expressed transcripts were identified between mild and severe IPF when categorized by percent predicted FVC.</p> <h3>Conclusions</h3><p>These results demonstrate that the peripheral blood transcriptome has the potential to distinguish normal individuals from patients with IPF, as well as extent of disease when samples were classified by percent predicted D<sub>L</sub>CO, but not FVC.</p> </div

    Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell

    Full text link
    The high pressure and high temperature phase diagram of Ta has been studied in a laser-heated diamond-anvil cell (DAC) using x-ray diffraction measurements up to 52 GPa and 3800 K. The melting was observed at nine different pressures, being the melting temperature in good agreement with previous laser-heated DAC experiments, but in contradiction with several theoretical calculations and previous piston-cylinder apparatus experiments. A small slope for the melting curve of Ta is estimated (dTm/dP = 24 K/GPa at 1 bar) and a possible explanation for this behaviour is given. Finally, a P-V-T equation of states is obtained, being the temperature dependence of the thermal expansion coefficient and the bulk modulus estimated.Comment: 31 pages, 8 figures, to appear in J.Phys.:Cond.Matte

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    corecore